
从2011年开始我一直都去美国一个很重要的会议(strata大会),他们最重要的话是:数据要用出来。我就在想,为什么中国不能也有一个。
在没有Data之前,我把所有的资料翻出来,从2011—2013英文里面排了一个序,最重要的是第一年,在2011年的大部分是讲大数据,有人说这个是大数据,有人说那个是大数据。到了2012年的时候大家都在尝试用大数据,但今年很奇怪,今年我们去美国的大数据的时候,你会发现大部分人已经开始停止讲大这个词,而是创造了一个词叫Dada,这个词是非常有意思的,我们把数据工程化,里面必须要有一个标准要出现,而且在有标准要出现之后,还有一些楼层要出现。那么Data我自己的想法是什么呢?我没有跟马总沟通过,我们这个Data要泛化更多的人要用,更多的人去用上数据,就好象20年前我们让每一个人用上科技,那今天的数据就是要给更多的人用。
其实今天我们已经进入了一个拐点,我特别没有把这个英文翻译的原因。我们所讲的是,现在我们拥有很大量的数据,我们以前要注意一个决定,可能要花很多的钱去投进去要细想,但是今天我们拥有一些大数据的时候,我们以前一些非常难做的决策,相对来说今天很容易做到,其实也是一个很重要的拐点。这个就是当我们能使用数据去去判断去一个问题的时候,我们就用数据化解决问题。
这个是PPT我下午在用,我很快过一下重点。我们从4个V的年代,可实时性、可解释性、数据准确性稳定性。但是今年我去美国我说数据要准确可解释,你知道我们数据挖掘的人最喜欢说这个东西可解释的,不能出来不可解释的,另外一个是可能落地的可以实施的。这三个纬度是我们现在到底数据能不能用上很重要的三个纬度。
我们现在整个数据里面的问题是什么呢?整个数据的问题是,猎物的人不知道数据怎么用?我想用但是不知道数据在哪里。做数据的人不知道别人怎么用。所以里面是有一个很大的障碍在中间的,所以这是我们在数据的一个现象。
两个循环,其实昨天皮特是一个行外人,他不知道大数据是怎么用?程杰当时说,他的看法是如果今天我们有很多的大数据,我们不是认为有一个问题说要找数据来解决一个问题,而是我们运营数据,我们搜集很多数据的数据可以帮我们解决很多未来的问题,这个才叫大数据。程杰要补充的话可以等一下再讲一下他的见解。所以我们过去来讲阿里做了两个循环,一个循环是在怎么用数据,一个循环在下面是说我们怎样养数据,怎么改善数据,两个循环不断的走动,所以我们在两个循环里面不断的进步,所以数据是练出来的。
三年前进去阿里的时候,我们说从看到用,我们不仅仅数据用来看的,而且要用。但是今天走到一个地方是不仅仅让你用,而且让别人用。这一次的圈,当我们要做让别人用的时候,第二个圈就比以前那个圈更困难了,更注重精准性。
我们整个数据运营来讲,会发现从整个运营里面产生了一些价值,同时,我们整个东西里面我们找出很多新的数据跟新的工具,等一下去讲小微金融副总裁孙权,我们最近就在解决这些问题,数据的出生,人才的不匹配、数据冗余、工具不统一,安全、质量,这些都是我们做数据必须保障的,否则就不容易产生数据的价值。
PPT,这是我会下面才讲的,我想跳到最后今天我要跟大家分享的部分。
其实两年前,我是写了一个数据实践,是讲到我们在做数据的时候要关注的几个问题,我改动了一下。两年前我是这样写的,关于数据的实践我说,一切从问题开始,从实践中提炼数据,让数据的体验变得超级简单,让数据跟着人走,然后颠覆性来自分类跟重组等等,但是我具体觉得,现在在两年后,会改变一下。所以数据质量不敢保证是不敢用的,另外大安全不是监管,监管不了的。因为大数据本身有太大,你需要更多的人来用,但是用监控的方法来监管一个大数据,没有办法监管起来。利用数据拿到更有用的数据这个很重要,以后建立数据的数据才有进步,因为我们拼命的做很多模板,但是既然是没有去保证今天的模板的数据质量,今天的大数据做得好,如果连衡量自己大数据做得好不好都不知道?我们怎么继续做好大数据呢?所以我们要建立数据的数据才有进步。最后有一点很重要的是,我们要让人做人擅长做的事,机器做机器擅长的事。千万不要倒过来,人做了机器擅长的事,以及机器做了人擅长的事,这样效率就会降低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01