
销售数据分析模型_数据分析师培训
销售数据分析的重要性已无需赘言,只有通过对销售数据的准确分析我们才有可能真正找准数据变动(增长或下滑)的根本原因,营销专家刘杰称之为“动因”。找准了“动因”也就发现了真正的问题所在,解决问题、发现新的生意机会点才成为可能!那么实际的销售过程中,我们如何才能有效做好数据分析,寻找到真正的“动因”呢?接下来笔者结合一个实际案例阐述一下数据分析的主要维度及如何才能真正找准“动因”。
案例:某糖果企业Y公司南京市场8月份销售业绩较去年同期下滑了100万。
在做销售数据分析的时候,第一个分析的维度就是要看数据变动是来自于哪几个大的品类。回到案例,面对Y公司南京市场8月份销售业绩较同期下滑了100万的数据变动情况,我们首先要确定的是下滑的100万是来自于哪个品类或哪几个品类,每个品类各自的下滑占比是多少,在此基础上进一步分析得出下滑的品类中是哪个规格的产品出现了下滑,从而真正找到造成业绩下滑的“罪魁祸首”。经过维度一的分析我们发现,8月份南京市场销售业绩下滑的100万主要是来自于水果糖和巧克力的下滑,其中水果糖下滑了60万,占比60%,巧克力下滑了40万,占比40%,进一步分析得出,水果糖的下滑主要是来自于128g袋装的下滑,巧克力的下滑主要是来自于散装巧克力的下滑。
销售数据分析的第二个维度是要看引起数据变动的销售区域在哪里?是整体销售区域都出现了下滑,还是局部区域市场出现了下滑?回到案例,南京市场下辖南京城区及江宁、六合、溧水、浦口四个县级市场。按此维度分析后,我们得出结论,南京市场销售额下滑100万主要是来自于城区市场和六合县城,其中散装巧克力的下滑主要是来自于南京城区市场,而128g袋装水果糖的下滑主要是来自于六合县城市场。
销售数据分析的第三个维度是要看引起数据变动的主要渠道在哪里?换句话说,是哪个渠道或哪几个渠道出现了销售业绩的变动?每个渠道数据变动的比例各是多少?按此维度分析后,我们进一步得出结论,南京市场8月份销售额下滑的100万主要是来自于两个渠道,一个是城区的喜铺渠道,另一个是六合县城的批发市场渠道,其中散装巧克力下滑的渠道主要来自于城区的喜铺渠道,128g水果糖下滑的渠道主要来自于六合县城的批发市场渠道。
经过以上三个维度的分析后,我们就可以确定销售数据变动的基本情况,从而为进一步找准“动因”提供了更加细致、准确的依据!回到案例,面对8月份销售额下滑100万的现状,经过分析后得出的结论是南京市场下滑的100万主要来自于南京城区喜铺渠道散装巧克力和六合批发市场128g袋装水果糖的下滑,其中散装巧克力下滑了40万,占比40%,128g水果糖下滑了60万,占比60%。
整个数据分析维度的模型图如下:
数据结论得出以后,接下来最为关键的是要找到“动因”,找准造成数据下滑背后的真正“动因”才是我们数据分析的最终目的!动因又应该从哪些维度方面着手呢?营销专家刘杰认为,要找到数据变化的真正“动因”需要从以下几个方面入手:
一、是不是铺市率发生了变化?
面对案例中下滑的两个品类散装巧克力和128g水果糖,我们首先要分析确定8月份这两个品类的铺市率较7月份相比是不是也出现了下滑?如果铺市率出现了下滑,那业绩自然也会下滑,如果铺市率没有下滑则业绩下滑另有他因。
二、是不是销售效率发生了变化?
所谓的销售效率主要是指产品的动销速度,销售效率的变化是引起销售数据变动的主要原因之一,当然销售效率的变化不能孤立的分析,它必须与以下提及的几点放在一起进行整体性的分析。
三、是不是价格发生了变化?
价格是影响终产品动销的关键因素之一,某个时间节点内的产品涨价或降价会在很大程度上影响该时间段内产品销售数据的变动。
四、是不是促销形式发生了变化?
随着产品同质化的程度越来越高,市场竞争日趋激烈,促销对产品的动销有着至关重要的因素,因此有无促销活动或促销形式的变化直接影响着销售数据的变动情况。
五、是不是竞品发生了变化?
市场是竞争的市场,竞品的因素很大程度上影响着本品销售数据的变化,在“动因”的寻找过程中,除了分析本品的因素以外,更要着重分析竞品的各项因素变化情况。
回到案例,经过以上5个方面的“动因”分析后我们最终得出结论,散装巧克力的下滑是因为主要竞争对手H品牌8月份在喜铺渠道开展了一次100箱送5箱的促销活动(竞争对手的原因),128g袋装水果糖的下滑是因为批发市场最大的一个分销商放弃了与Y公司的合作(铺市率降低的原因)。营销专家刘杰认为,到达这一步以后我们才算完成了有效的数据分析,因为我们找到了造成数据变化的真正“动因”。
整体“动因”寻找的模型图如下:
总的来说,数据分析是一切问题决策的基础,数据分析整套模型的核心目的就在于帮助我们又快又准的找到“动因”,“动因”找准了,解决“动因”的方法自然也就有了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26