京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何做好反洗钱工作
当前数据比以往任何时候都更加根植于我们生活中的每一个角落。无论是国内还是国外,无论是学界、商界还是政界,都在谈论大数据、畅想大数据。大数据正带来深刻的思维变革、商业变革和管理变革。大数据时代,反洗钱工作也应顺势而为,合理利用多种来源的海量数据,进行更深入的挖掘,使预防、打击洗钱和恐怖组织犯罪的工作更精准。
目前的可疑交易的甄别需要金融机构反洗钱人员借助系统内各业务系统的数据,从客户的年龄、职业、行业、所处地区、交易对手、资金来源及去向等方面入手,对系统筛选出的数据进一步识别,从而把待甄别数据划分为正常和可疑两个类型。人工识别准确与否,依赖于客户在金融机构留存的基础信息是否全面、完整以及资金链条是否可追溯。虚假的信息和跨行交易、第三方支付平台造成的资金交易链断裂,都会给可疑交易甄别工作带来一定的困难。
基于大数据的反洗钱工作,除了使用金融机构、第三方支付平台之间资金流动数据外,还可以组合使用来自工商、税务、房管、海关、贸易、交通、质检、劳动人事、公安、法院等政府部门以及消费、娱乐、社交等商业活动及人民生活领域多个源头的数据。如通过工商、税务、司法等平台可查询对公客户是否存在证照过期、偷税、漏税、违法犯罪等形成的不良记录。涉及到个人客户,可以查询其是否有过不良信用记录等情况。通过这些途径,扩大了客户信息的来源,通过客户信息资料比对,可以使可疑交易的识别更加精准。
总之,大数据对反洗钱的影响是全面而深刻的,客户身份识别就像画像一样,各方面的信息积累越多,就越描越细,根据其以往轨迹可以分析其行为特征,从中找出异常交易,从而挖掘背后隐藏的违法行为。为此,笔者在基于实际工作中遇到的问题提出对利用大数据预防、打击洗钱和恐怖组织犯罪的工作建议。
为大数据开放共享建立制度保障。大数据的开放使用是世界趋势,大数据是治理现代化的一种技术路径,可以依靠海量的数据搜集和精准的数据分析增强决策的科学性,对政府管理有着重要意义,政府应有所作为。信息公开是政府利用大数据治国的一个必要条件,我国虽然制定了《政府信息公开条例》,但实施几年以来,政府各部门对信息的封锁依然如故。要想完全开放共享大数据,政府应加强制度上的建设,建立国家层面的信息法,为大数据开放共享建立相应的社会保障制度。通过立法框架和体制的修改,推动数据共享和接入。
建立国家级数据仓库和网络。数据合并需要技术支持,需要有专门部门对不同数据源进行整合,转化统一,形成可以实现检索、汇总等,而对只有建立国家级这样的数据仓库,才能为相关部门所用。要能够使数据仓库不断吸收最新的数据,并得到有效维护和充分利用,就需要建立能有效收集、维护和使用数据的网络。这同样需要政府有所作为:建立一个跨系统、跨平台、跨数据结构的政府综合信息处理网络平台。通过建立一张遍布全国、互相联系、顺畅流通的网,消除信息孤岛,使大数据流动起来,确保大数据能在各机构间得到有效的使用。
互通互联体系的建立需要一个漫长的过程。但金融机构可以在某一领域内进行尝试,如金融机构与第三方支付平台分享信息,共同构建甄别系统,加上互联网技术的运用,就能加大防止恐怖融资和网上洗钱力度,也可为大数据在反洗钱工作中的应用逐步积累经验。
建立保护隐私安全的法律法规。大数据时代的信息安全需要有明确的法律和惩罚措施,对大数据拥有者进行约束。有了针对大数据安全的法律法规,使用数据的部门、机构就需要对数据生产者可能造成的影响、对涉及个人数据再利用的行为进行正规评估,为其行为承担责任。作为金融机构,应严格执行客户信息保密制度。应用大数据对可疑交易进行识别,必然会掌握客户的海量信息。因此,客户信息保密制度的执行就显得尤为重要。一要选择业务素质和政治觉悟高的人员从事反洗钱甄别工作;二要与从业人员签定保密承诺书;三要加强对反洗钱从业人员保密意识的培养;四要对各类业务系统的进入实行严格的授权管理。
高度重视大数据人才的招募和培养。金融机构利用大数据反洗钱必须拥有专业的人才和完善的人才管理配套制度。因此,金融机构在建立自己的大数据反洗钱专业团队时,要以大数据平台建设为基础,积极招募和培养精通数据管理和分析的高级人才,打造专业、高效、灵活的大数据分析团队。而在管理方面,需要对现有管理架构、组织体系、资源配置和权力结构进行重组,让数据管理与分析成为反洗钱工作的重心。同时加强基层机构原有员工的培训力度,努力提高他们对洗钱犯罪行为方式的了解,注重对相关的新型反洗钱专业技能的培训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09