
论大数据分析的正确方法 应理智对待
大数据分析之数据数量 据统计,从人类文明开始到2003年,人类共创造了5TB(兆亿字节)的信息。现在,同样的数据量仅需两天就能够被创造出来,且速度仍在加快。如此庞大的数据量使数据分析复杂化,而大数据中的非结构化数据将加深这种复杂度。 这种情况下,我们需要清楚:什么样的数据应被保存。如果从整体性出发,数据采集和存贮算不上大数据,对海量数据进行分析计算之后的结果才有实际价值。这亦是大数据的价值所在。
关于大数据数量,业内一种较为激进的观点认为,“大数据”的叫法存在问题,因为数据只有“大”是没有用处的。虽然数据无处不在,但唯有复用性强和可转化成有用抽象信息的数据才更有价值。 即使我们的数据搜集、处理能力逐渐增强,仍然要坚持“不是任何数据都重要”这一准则。对企业来讲,具体需遵循两点,一是坚持数据广泛性,对内掌握企业内部分析数据,对外摸准用户喜好和习惯;二是坚持数据关键性,从最重要处着手,把握数据复用性,达到最大价值又使成本最优化。 《哈佛商业评论》近期发表了一篇题为“更大的数据会导致更好的决策吗?”的文章,这篇文章提出警告,把重点放在量的方面将导致大错误。如今很多企业试图通过庞大的数据量获得利益,但只有少数企业真正取得成功,这是过分注重数据“量”带来的弊端。
大数据分析之数据质量与数据分享 我们知道,要保证分析结果的准确性,必须确保被分析数据真实有效,至少绝大部分数据样本要有质量保证。但在大量数据从数据源汇聚而来的过程中,难免有以次充好的数据混入。 在淘宝网购时,卖家信用等级是买家购买与否的重要参考。
为了提高产品销售量,刷信用等级成了业内公开的秘密,伴随着部分卖家弄虚作假、违规提高信用等级的过程,将产生大量失真数据,在欺骗消费者的同时,也会直接影响后期数据分析结果。 其次,中国互联网产业中,“数据割据”现象较严重,即掌握大量核心数据的几大互联网巨头各自为战,不愿分享。如掌握搜索数据的百度,掌握社交数据的腾讯,掌握消费数据的阿里巴巴,他们都意识到数据对于未来企业竞争力的重要性,因此不会将自己手中的数据筹码轻易示人。 仍旧以百度、腾讯、阿里巴巴为例,按照目前他们在中国互联网的流行程度,我们可以大体估计同时使用这三种应用的用户个体占互联网总用户数的比率,保守估计,达到50%不成问题。因此,这三方数据一旦实现共享,将能拼凑出一幅完整的网络信息图谱。
反之,“数据割据”造成大数据断层和片面性,使其利用价值大打折扣。 CMIC认为,在大数据洪流汹涌袭来的当下,信息的流动才是重中之重,互联网巨头们的数据割据思维严重阻碍着整个产业的发展。尤其对于那些拥有大数据分析技术却无大数据源的中下游企业来说,面临“巧妇难为无米之炊”的窘境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23