
当智能交通遇上大数据(2)_数据分析师
人口分布、用地情况以及出行速度分布等一系列模型体系的建立,为城市管理和政府决策提供了数据支撑。他们将罗湖区细分为2864个交通小区,从宏观、中观、微观三个层次建立了系列模型,作为支撑整个城市交通服务和交通问题的分析研究。
深圳市曾提出构建未来交通实验室的畅想,在这样的大推进模式下,由中国综合交通指挥中心作为未来开放实验室的数据基础环境,联合多家科研机构推进交通未来实验室的开发,实现交通资源面向城市、面向社会一体化的公益性服务。
此外,深圳市具有全国最大规模的仿真环境。交通仿真的建立为整个城市轨道交通模型体系的不断优化,为城市交通指数的监测和服务提供了有效的技术支撑和保障。
技术创新倒逼管理变革
大数据仿佛一夜之间风靡全球,既宣告了一个时代的到来,又显然成了一个时代的标志。
但“大数据不是定制数据,往往是间接证据”。杨东援表示,间接证据在某些区间里的判断是成立的,在某些区间里的又肯定不对,无法直接成为决策依据。
“再者,就是对数据进行清洗和正确的判断,因为大量的数据经常是错的。”杨东援举了个例子:研发机构号称牌照读出率为95%~98%,但数据交合后发现,实际上不到6万辆的上海出租车,被读出的车辆数却呈数量级翻倍——原来是“z”和“2”傻傻分不清。然而,“交通大数据应用的最大困难还不是技术,而是管理者的变革决心。”杨东援坦言,大数据的价值在于让我们更好地“搭脉”,“帮助我们发现不知道的,而不是验证已经知道的”。
从城市交通角度来讲,政府如何利用大数据对整个城市交通进行管控,这是一个亟待解决的问题。
“在非高峰时期,人们为何也不选择公交出行?一个重要原因就是没有时刻表。”杨东援坦言,老百姓所谓的公交出行时间,实际上是将无效预留时间也算在内。除了让公交跑得快以外,能否减少无效预留时间等问题也有待解决。
据科研人员分析,智能交通的潜在价值还没有得到有效挖掘,对交通信息的感知和收集有限,对存在于各个管理系统中的海量的数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。这会造成智能交通的效率不高,智能化程度不够,使得很多先进技术设备发挥不了应有的作用,也造成了大量投入上的资金浪费。
由此可见,交通大数据只是一系列图和表,交通工程师也只是参谋,政府才是决策者。大数据与管理如果不能携手同行,智能也只能在云端打转。
延伸阅读
宝船网公司产品总监杜忠平:
智能航运须放开心态
大数据时代,从简单的数据收集到数据应用都发生了变化,航运也需要充分运用数据,建立高效、快捷的服务平台。
在日前举行的云计算大数据智能交通行业应用论坛上,宝船网公司产品总监杜忠平表示,在大数据环境下,任意港口都会有大量的信息服务运营商,包括船贷、网贷、物流调度等等。
用大数据工具建立第三方服务平台,可以节约资源,提高航运标准、方便货主。
据了解,中远集运曾通过资源整合和优势聚集,提高仓位的利用率、空箱调运和装卸效率等。
“通过数据分析,可以很快检测到上海等港口的航行状况,包括集装箱码头真实的分布。只要输入名称就能搜索到你要找的船。”杜忠平表示,希望在航运领域形成开放和透明的市场环境。
运用大数据进行船舶工业实践,除了技术本身需要进一步突破,更重要的是建立以数据为导向的全新商业模式。
“我们有30万条船的数据可以上传云端对外开放,但如果只是提供简单的查询就不叫创新。”杜忠平提出,“要提前做好所有的数据接口,等待用户访问。”
在大数据时代下,船必须变成“会思考”的智能船舶。船舶智能化已经成为当今船舶制造与航运领域发展的必然趋势。在海洋强国的使命号召下,智能船舶的发展是大势所趋,需要用更大的勇气、更广阔的视角把船舶工业带向更大的市场。
“在航运和物流领域工作,要开放心态,在没有交易之前先共享数据,趁着大数据这个浪潮到达下一个成功的彼岸。”杜忠平最后说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02