
“四步法”提升数据分析能力的成熟度
配备合适的人才和技术,您可以做到未雨绸缪,快速响应。
现实中存在着数量惊人的公司,在需要作出影响其公司底线的关键决策的时刻,缺乏及时有效的信息。想象一下这样的一个画面:某汽车生产厂家由于安全故障问题而面临大量召回的风险;或者社交媒体上充斥着对某旅行社的负面评价;如果在这些事件发生之前或者在危险还没升级之前,相应的危机可以得到解决的话,相信无论是汽车生产厂家还是旅行社,都会大受裨益。
幸运的是,我们知道一个公司/组织能否对未来作出快速的响应,与其内部预测分析能力的成熟度直接相关。而这一切又取决于合理的人才配备、分析流程以及分析技术的部署和应用,全副的武装可助您解燃眉之急,并赋予您处理实际业务中碰到的疑难困惑的能力,还能够对潜在的风险作出预警,当然所有这些都建立在对现有数据进行分析的基础上。
接下来的四步曲可以帮助您提升组织内部敏捷的分析能力,即在事情还未发生之前及时作出预警,从而减少未来的不确定性。
第一步: 把分析置于首要地位
提升组织内部分析能力最关键的一步就是要让所有的员工都意识到基于信息决策的重要性。关于数据分析重要性的宣介活动可以通过多种形式:包括视频教学、在线研讨会以及关于数据分析实践的社群共享,或者直接给大家展示可视化分析的结果等。总之,不管通过何种方式,要让大家清楚的认识到高级的数据分析技术可以带来重要的价值应用。
同时,你也可以盘点并梳理一下组织内部现有的分析资源:比如挑选不同部门内部对数据敏感、有一定分析能力的员工;记录组织内部有哪些关键的数据分析技术应用,列出关键的业务应用领域。我们还建议推举出分析领域的专门负责人,由这个人负责主要数据分析战略的落实,保证组织在接下来各个阶段的分析能力建设的成功部署。
第二步: 进行分析试点
该阶段通过梳理和使用现有的分析资源,明确公司的数据分析能力。通过将组织的现状和将来的战略目标进行对比,确定存在哪些新的机会,分析可以在其中起到关键作用。再进一步,分析团队需要考虑如何使得分析预测的结果更加精确和及时,以及这些分析结果如何在业务中得到更好的应用。
数据分析的整个流程是该阶段的关键,一定要特别注意。我们既要进行深入的数据探索和建模,还要考虑模型的修正、部署以及监督应用;通过详细回顾分析的整个流程,您将有可能发现哪里存在不足,以及哪些地方需要改进,进而形成数据分析相关的规章制度和相关流程。
第三步: 组建分析团队
组建内部自发的分析团队,并鼓励形成凝聚力强的分析社区。内部的分析专家可以相互进行探讨,对组织内部数据分析建设提出建议,并通过有效的维系促进分析能力的建设和发展。
小组会议,研讨会以及用户交流会或者博客等形式都有助于提升数据分析的应用和升级,在分析能力建设的后期,交流对于公司整体数据分析能力的提升发挥着极其重要的杠杆作用。
第四步: 通过分析预测调整战略部署
到了该阶段就意味着所有数据分析相关的基础架构和配备都已经部署完毕,组织根据业务变化的需要可以借助强大的分析能力作出快速响应。比如针对业务需要的新的模型可以很快的建立和部署应用,而且比以往的预测结果更加精确,从而可以提供更加精准的信息。
在该阶段,分析的目的应该从简单的回答战术性问题转移到更具前瞻性的战略问题上来,该阶段的分析包括对一些有可能发生的情景进行测试,通过模拟、优化以及其他前沿的统计学方法排除一些发生概率低的可能性结果。该工作可以通过一个集中的分析平台来进行。除此之外,不同形式的海量数据的应用,包括文本数据和社交数据,也可以帮助预见未来,并激发创新性的想法以吸引消费者,同时赢得市场先机。
结论
要完成以上四步的实施并非易事,也不能一蹴而就。分析能力的培养需要领导层的决心和信心以及其持续性的支持和努力,另外对人才储备和分析工具进行的投资同样也是成功的关键。
提升组织的分析能力成熟度需要多方面的工作,包括合理的人才配备、分析流程以及分析技术的部署和应用更关键的是数据资产的质量和完备性。但是高效灵活的数据分析带来的回报是不可估量的-有可能是决定性的成败!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26