
大数据时代下 CRM选型关键在于数据分析能力
大数据时代下 CRM选型关键在于数据分析能力大数据时代,客户关系管理数据越多越好?我们生活在一个数据爆炸的年代,移动互联网、云计算等现代信息技术的发展让数据量搭上腾飞的火箭,从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量)……身处大数据洪流,企业的客户关系管理也不能幸免,同样面临着来自四处八方的大量数据,如顾客对品牌的反应,股票趋势和市场预测等外部数据,客户沟通记录、客户购买产品、客户基本信息、客户售后服务等内部数据。在实际企业管理过程中,很多企业容易被大数据冲昏了头,认为客户关系管理掌握越多关于客户和产品的信息,就能够了解客户和产品更全面,就越能在激励的市场竞争中稳住阵脚。其实,在客户关系管理中,数据不是越多越好,数据有用、有价值才是关键。如何在这些大量的数据中甄选出有价值的数据呢?这是新时期所有企业进行客户关系管理首要解决的问题。选用嵌入BI的CRM才是全面的客户关系管理 信息化时代,很多企业进行客户关系管理都会选用CRM系统。传统的CRM系统一般都能够涵盖市场营销管理、客户信息管理、销售管理、售后服务管理等功能模块,管理链条从售前、售中,延伸到售后的客户关系,堪称360°全面客户自动化管理。然而,大数据时代,面对纷繁复杂的大量数据,这样的360°全面客户自动化管理却已经跟不上时代的步伐,新时期的CRM要求嵌入BI功能,能够对海量的数据进行分析处理,甄选出有用的数据,作为管理层科学决策的数据参考,彰显出数据的价值。因此,大数据时代,选用嵌入BI功能的CRM系统才称得上全面的客户关系管理。而且,由于数据量的庞大与复杂,嵌入的BI功能必须经受得住考验—数据处理能力要强大,能够应对呈几何级别增长的数据量;数据分析要实时,能够跟上不断变化着的数据;数据汇总要精准,能够真实反映客户和产品情况。可以说,大数据时代下,CRM选型的关键在于其数据分析能力,企业在进行CRM系统选型时要重点考察系统的数据分析能力。“采-存-剖-现”四部曲 CRM数据分析能力大考验大数据时代,企业需要一款嵌入BI功能的CRM系统,更为重要的是,嵌入的BI功能要强大。那么,CRM系统要具备怎样的数据分析能力才能应对源源不断产生的数据量呢?8thManage专家认为,可以从数据采集、数据存储、数据分析、数据展示等四个方面入手,只有在源头上采集到精准的数据、拥有全方位的数据库管理,以及实时精准快捷深入的数据分析和清晰的数据分析结果展示,才算是真正强大的CRM数据分析能力。
一、自动快速地采集精准的数据。大数据时代,虽然各种各样的数据层出不穷,但却并不是每一个数据都是有用的,事实上,有很大的一部分数据对于企业来说是没有参考意义的。嵌入BI功能的CRM系统必须支持在源头上高效率低成本得采集到精准的数据,轻轻松松地掌握有效的第一手资料。二、全方位数据库管理。大数据时代,数据的形式非常多样化,不仅有结构化的数据,还包含了大量的非结构化数据,如何规范化得存储这些不规则的数据对于企业来说也是一种挑战。能够对多样化和非结构化数据进行统一和规范化地存储和管理,也是CRM数据分析能力的体现。三、数据分析要实时精准快捷深入。海量的数据,关键在于通过分析整合,转换为对企业有价值的信息,数据处理是CRM系统应对大数据挑战必要的一个环节,它将直接支持管理层的科学决策。大数据时代,数据分析要实时精准快捷,并且要能够多层次深入地挖掘数据的内涵,这也是CRM数据分析能力最重要的一个体现。四、数据展示要清晰,一目了然。分析再准确,但若不能清晰地展示给管理层,科学决策也无从说起。数据展示是CRM数据分析能力考验最后一关,要支持多形式多维度全面地展示企业的客户和产品情况,管理层对企业客户和产品情况一目了然,决策起来自然更加科学合理。8thManage CRM是由高亚科技(广州)有限公司自主研发的客户关系管理系统,其嵌入式商业智能支持灵活全面的数据库管理,自动采集数据,分析和挖掘数据信息并且自动生成实时的分析报表,把多元化的非结构化的数据转换为真正有价值的信息,让企业的管理决策更准确,创造巨大的商业价值和效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28