京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘历史中的重要里程碑_数据分析师培训
数据挖掘现在随处可见,而它的故事在《点球成金》出版和“棱镜门”事件发生之前就已经开始了。下文叙述的就是数据挖掘的主要里程碑,历史上的第一次,它是怎样发展以及怎样与数据科学和大数据融合。
数据挖掘是在大数据集(即:大数据)上探索和揭示模式规律的计算过程。它是计算机科学的分支,融合了统计学、数据科学、数据库理论和机器学习等众多技术。
1763 年,Thomas Bayes 的论文在他死后发表,他所提出的 Bayes 理论将当前概率与先验概率联系起来。因为 Bayes 理论能够帮助理解基于概率估计的复杂现况,所以它成为了数据挖掘和概率论的基础。
1805 年, Adrien-Marie Legendre 和 Carl Friedrich Gauss 使用回归确定了天体(彗星和行星)绕行太阳的轨道。回归分析的目标是估计变量之间的关系,在这个例子中采用的方法是最小二乘法。自此,回归成为数据挖掘的重要工具之一。
1936 年,计算机时代即将到来,它让海量数据的收集和处理成为可能。在1936年发表的论文《论可计算数(On Computable Numbers)》中,Alan Turing 介绍了通用机(通用图灵机)的构想,通用机具有像今天的计算机一般的计算能力。现代计算机就是在图灵这一开创性概念上建立起来的。
1943 年,Warren McCullon 和 Walter Pitts 首先构建出神经网络的概念模型。在名为 《A logical calculus of the ideas immanent in nervous activity》 的论文中,他们阐述了网络中神经元的概念。每一个神经元可以做三件事情:接受输入,处理输入和生成输出。
1965 年,Lawrence J. Fogel 成立了一个新的公司,名为 Decision Science, Inc,目的是对进化规划进行应用。这是第一家专门将进化计算应用于解决现实世界问题的公司。
上世纪 70 年代,随着数据库管理系统趋于成熟,存储和查询百万兆字节甚至千万亿字节成为可能。而且,数据仓库允许用户从面向事物处理的思维方式向更注重数据分析的方式进行转变。然而,从这些多维模型的数据仓库中提取复杂深度信息的能力是非常有限的。
1975 年,John Henry Holland 所著的《自然与人工系统中的适应》问世,成为遗传算法领域具有开创意义的著作。这本书讲解了遗传算法领域中的基本知识,阐述理论基础,探索其应用。
到了 80 年代,HNC 对“数据挖掘”这个短语注册了商标。注册这个商标的目的是为了保护名为“数据挖掘工作站”的产品的知识产权。该工作站是一种构建神经网络模型的通用工具,不过现在早已销声匿迹。也正是在这个时期,出现了一些成熟的算法,能够“学习”数据间关系,相关领域的专家能够从中推测出各种数据关系的实际意义。
1989 年,术语“数据库中的知识发现”(KDD)被Gregory Piatetsky-Shapiro 提出。同样这个时期,他合作建立起第一个同样名为KDD的研讨会。
到了 90 年代,“数据挖掘”这个术语出现在数据库社区。零售公司和金融团体使用数据挖掘分析数据和观察趋势以扩大客源,预测利率的波动,股票价格以及顾客需求。
1992 年,Berhard E. Boser, Isabelle M. Guyon 和 Vladimir N. Vanik对原始的支持向量机提出了一种改进办法,新的支持向量机充分考虑到非线性分类器的构建。支持向量机是一种监督学习方法,用分类和回归分析的方法进行数据分析和模式识别式。
1993 年,Gregory Piatetsky-Shapiro 创立“ Knowledge Discovery Nuggets (KDnuggets) ”通讯。本意是联系参加KDD研讨会的研究者,然而KDnuggets.com的读者群现在似乎广泛得多。
2001 年,尽管“数据科学”这个术语在六十年代就已存在,但直至 2001 年,William S. Cleveland 才以一个独立的概念介绍它。根据《Building Data Science Teams》所著,DJ Patil 和 Jeff Hammerbacher 随后使用这个术语介绍他们在 LinkedIn 和 Facebook 中承担的角色 。
2003 年,Micheal Lewis 写的 《点球成金》 出版,同时它也改变了许多主流联赛决策层的工作方式。奥克兰运动家队(美国职业棒球大联盟球队)使用一种统计的,数据驱动的方式针对球员的素质进行筛选,这些球员被低估或者身价更低。以这种方式,他们成功组建了一支打进2002和2003年季后赛的队伍,而他们的薪金总额只有对手的1/3。
如今(2015年),在 2015 年二月,DJ Patil成为白宫第一位首位数据科学家。今天,数据挖掘已经遍布商业、科学、工程和医药,这还只是一小部分。信用卡交易,股票市场流动,国家安全,基因组测序以及临床试验方面的挖掘,都只是指数据挖掘应用的冰山一角。随着数据收集成本变得越来越低,数据收集设备数目激增,像大数据这样的专有名词现在已经是随处可见。
数据挖掘的故事就是这样,匆匆而过!我是否错还过了什么值得提及的事情?我是不是对某些事情叙述的还不够准确?请在下面的评论中让我知道,或者直接邮件联系我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27