京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS帮你绘制质量控制图_数据分析师
控制图(Control Chart)又称管理图,它是用来区分是由异常原因引起的波动,还是由过程固有的原因引起的正常波动的一种有效的工具。控制图通过科学的区分正常波动和异常波动,对工序过程的质量波动性进行控制,并通过及时调整消除异常波动,使过程处于受控状态。不仅如此,通过比较工序改进以后的控制图,还可以确认此过程的质量改进效果。因此,控制图在质量管理中有着广泛的应用。
控制图的种类很多,一般常按数据的性质分成计量值控制图和计数值控制图两大类。而最常用的是计量值控制图中的平均值-极差控制图,这两类控制图的特点与适用场合详见表1。
质量控制图的绘制
控制图有着重要的实践意义,因此在企业的生产过程、工序监控过程中有着广泛的应用。然而,令质量管理人员烦恼的是,虽然控制图的意义比较明显,但是控制图的绘制却要花费巨大的人力和时间。
现在,大多数企业都是通过人工来绘制控制图,首先通过计算器计算各种指标,然后再一步步地绘制控制图。在这个过程中,往往会出现计算错误或者误差过大等原因,使得最后的控制图达不到预期的效果,更为严重的是能使质量管理者产生错误的判断,做出错误的决策,从而产生较大的损失。也有的企业利用excel绘制控制图,从而提高其精确度,减少误差。然而,用excel绘制控制图的步骤比较繁杂,不容易掌握,容易在绘制过程中产生操作性失误,造成数据集的失真。
SPSS的图形工具非常强大,具有很强的统计分析功能。在质量数据管理中,经常要用到一些图形方法和工具,例如帕雷托图、直方图、散点图、控制图、序列图等,SPSS均可以有效地应用这些图形方法和工具来处理质量数据信息,这些功能集中在Graph菜单中。
点击“Group”下拉菜单中的“Control”项,将会弹出“Control Charts”对话框。从中选择所要绘制控制图的类型,“X-Bar,R,s”、“Individuals,Moving Range”、“p,np”、“c,u”分别表示“均值-极差控制图”、“单值-移动极差控制图”、“不合格品率控制图”和“缺陷数控制图”。“Data organization”则是选择以组为单位,还是以个体为单位进行分析。单击“define”按钮,则会弹出控制图各种参数确定的对话框,通过设置,就可以比较迅速地绘制出需要的控制图。
下面以一个实例介绍SPSS软件绘制质量控制图的过程。
实例介绍
例:某化学用品厂生产一种产品,每件产品需要反应试剂至少为1克,但是不能超过50克。为了控制生产过程,准备用控制图对生产过程进行监控,步骤如下:
第一步:建立数据文件。经确定,本例应用平均值—极差控制图,每5个观测值作为一组。
第二步:点击Graph菜单中的“control”项,弹出“Control Charts”对话框。选择其中的“X-Bar,R,s”表示均值-极差控制图。并选择数据组织方式为“Cases are units”表示观测量分类模式。
第三步:单击“Define”按钮,将弹出“X-Bar,R,s:Cases Are Units”对话框,其中,“Process Measurement”框用于选择工序变量,也就是待分析变量;“Subgroups Defined by”用于选择分组变量;“X-Bar and range”表示绘制平均值—极差控制图;“X-Bar and standard de?鄄viation”表示要绘制均值—标准差控制图。在此将变量“重量”选入“Process Measurement”;将变量“组号”选入“Subgroups Defined by”;选择“X-Bar and range”,即平均值—极差控制图。
第四步:单击“Options”按钮,打开“X-Bar,R,s:Options”对话框,其中,“Number of Sigmas”表示用于选择中心线以上或以下标准差的数值,在此根据质量管理的“3σ原则”,填入“3”; “Minimum subgroup size”为每组的最小样本容量,在此填入“5”,“Display subgroups defined by missing val?鄄ues”表示显示缺失值的组,在此不选择,点击“Continue”。“Statistics…”对话框中“Specification Limits”框用于设置上、下参考线,用以比较数据,在此可以分别填入“45”和“25”。
最后,点击“OK”,即可以绘出所要求的控制图,结果如图1和图2所示。
通过此控制图就可以看到均值、极差上下控制线以及平均值,还可以看到在25和45参考线以外的组号,并且通过分析,可以看出该控制图没有出现越出控制界限的点子,也未出现点子排列有缺陷的情况。因此,可以知道两张控制图无任何异常,说明生产过程是正常的,是受控的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12