京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以钉钉子精神发展大数据产业_数据分析师
大数据是新生事物,既要满腔热情,又要脚踏实地,以钉钉子精神,把发展大数据产业钉紧钉实
发展大数据产业是我们看准的一颗钉子。首先,这完全符合习近平总书记对贵州提出的守住发展和生态两条底线的指示要求。其次,发展大数据产业是充分利用和发挥贵州优势的战略选择。一年多来,我们坚持以大数据引领产业升级、助推政府转型、服务社会民生,积极探索实践,形成了一套务实管用的工作思路,制订了规划和政策,构筑了“云上贵州”系统平台,率先举办以大数据为主题的博览会和峰会、率先建立大数据交易所和大数据战略重点实验室、率先打造贵阳全域公共免费WiFi城市,取得了阶段性成果。这说明,贵州这样的欠发达地区在某些领域也是可以先行一步的,关键是对认准的事情,思想上要坚信,行动上要坚持。
大数据是新生事物,我们既要满腔热情,又要脚踏实地,以钉钉子精神,把发展大数据产业这颗钉子钉紧钉实。
钉钉子要钉到关键处、钉在点子上。我们要抢抓国家发展大数据和实施“互联网+”战略机遇,紧紧围绕数据“集聚、融通、应用”三个关键环节,深入挖掘大数据的商业价值、管理价值和社会价值。发展大数据产业,海量的数据资源是基础,因此要加速数据集聚。大数据的本质是基于互联网基础上的开放共享、互融互通,在注重数据安全的前提下要加快数据融通,分层次有序向企业和社会开放数据。大数据真正的魔力在于应用,政府既要有序开放数据,又要有效应用数据。同时,要围绕大数据全产业链,鼓励和吸引更多市场主体进入贵州,推进创意与资本结合,让创意结出成果,通过商业化应用模式的创新,让数据有价值、可交易、生红利。
发展大数据产业要做的事情很多,钉钉子每一锤都要敲实。当前,要围绕打造基础设施层、系统平台层、云应用平台层、增值服务层、配套端产品层五个产业链层级,盯牢敲实每一件事。第一件事,加速集聚数据资源,推动省级政府数据率先聚集,积极招引省外、国外的数据资源,加快数据中心建设;第二件事,全力推进“云上贵州”系统平台建设,抓紧实施一批示范工程;第三件事,积极探索大数据产业形态和商业模式;第四件事,着力构建“出省宽、省内联、覆盖广、资费低”的信息基础设施体系,拓展支持创业创新的政策措施,打造众创空间平台;第五件事,加快制定智能端产品制造业发展规划,将大数据产业做大做实。
钉钉子要有真本领。大数据内容代表的是历史,而其应用服务的是未来。各级领导干部要树立大数据思维,与时俱进地加强学习,依靠学习走向未来,努力成为大数据领域的行家里手。每个厅局长都要做数据开放应用的“促进派”,落实好各自领域的“云长制”,靠作风吃饭、拿成果说话,真正做到“数”聚爽爽贵阳,“云”集多彩贵州,共同谱写“云上贵州”的新篇章。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07