
大数据分析现状、发展计划和面临的挑战
为分析并预测大数据技术的发展现状、发展计划和面临的挑战,IDC将于2013年秋季对德国相关应用企业进行问卷调查。
从技术角度来看,大数据包括像Hadoop、高扩展度数据库、最佳可视化工具以及高性能搜索引擎这样的新技术和已经成熟的技术,如事件驱动处理技术、商业智能技术和数据挖掘技术,这些技术主要用来处理海量的数据。
大数据技术的主要任务是从内部和外部数据源中找出所需的数据,并对这些
数据进行高效快捷的评估,最终提供决策支撑。
全球对大数据技术和服务的投资在增长
目前,大数据在美国最为发达,包括德国在内的欧洲地区在这一领域稍显落后。不过,现在业内人士已经注意到了这一趋势,各个企业中的IT部门正在感受到发展的压力。
期望和前提
数据评估和报告在大多数企业中早已不是新鲜事物,只是如今旧的数据评估和报告工具已经无法满足新的需求:现在的专业人士要求尽量实现数据实时分析,目前的基础设施、数据结构、解决工具以及商业模式根本无法保质保量地完成这个要求。
企业现在面临两个选择:对现有技术进行扩展,或者实现技术升级。大数据技术就是比较理想的新技术。
讨论热点
过去几年,大数据讨论中比较热的话题是技术问题和数据组织问题。经过几年的发展,人们对这些问题的理解有了深入发展,又开启了新的讨论话题。
现在,专业人士讨论的焦点问题是工作量优化,未来关于工作量和新的商业模式的讨论还会更多。2011年和2012年大数据的项目比较少,主要以测试安装为主。
IDC预测,今年和明年这一领域会出现大幅增长。对于企业来说,大数据技术既是挑战,也是机遇。
战略和解决方案
所以,大数据势必成为ICT(Information Communication Technology,信息通信技术)战略的一部分。数据访问和融合也变得越来越重要。
IDC认为,2013年和2014年人们关注的热点将从技术转移到信息查找和知识获取。“软件定义”(Software defined)、融合技术、开源软件及平台是大数据基础设施建设中最核心的问题。其中,开源软件与平台还需要经过一个商业适应的过程。许多企业把投资重点放在机器生成数据的实时分析上,因为这可以加快企业的发展。终端用户希望解决方案可以简单易操作。要实现应用程序和移动解决方案的可视化和直观互动,就要实现大数据的“消费化”。
IDC预测,由于缺乏大数据分析的方法和技术,许多企业将使用“现成的”解决方案。
投资活跃
全球范围内,企业对大数据技术和服务的投资增长都会很快。IDC预测,未来几年的平均增速将大于30%。
市场透明度还不够
企业还有许多待解答的问题。对于许多IT负责人来说,可衡量的商业收益、数据安全、数据法律以及可使用数据的准确定义这些问题都不够透明。对于企业来说,数据正在加速成为运作资源和生产要素。要实现从技术到信息和知识获取的转变、使用开放源、进行实时分析,企业就要对技能、解决方案和服务投资。许多企业对这一领域了解不多,需要有人为他们解释技术、组织、法律以及文化方面的问题。
总的来说,企业在获取大数据技术和分析方面的信息以及咨询需求都非常大。对于这一领域的ICT供应商和服务商来说,这是一个绝好的发展壮大的机会。要制定正确的市场营销策略,获得漂亮的销售成绩,关键就在于了解用户环境中IT和商业决策者的要求和期望。
为验证IDC对大数据分析发展现状、发展计划和要求方面的预测,IDC将于今年秋季对德国的应用企业进行调查。这份调查名为《分析、可视化、预测——2013德国数据策略:大数据分析能否带来商业成功》,主要是了解先进的分析工具在企业中的应用情况,了解企业更倾向于使用哪种解决方案来选择和加工重要数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28