京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析技术的发展_数据分析师
所谓的“大数据”并不只是数量上的“大”。简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义: 1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。
2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。
3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。 4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。 近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。
据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。
然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务? 大数据分析技术最初起源于互联网行业。网页存档、用户点击、商品信息、用户关系等数据形成了持续增长的海量数据集。这些大数据中蕴藏着大量可以用于增强用户体验、提高服务质量和开发新型应用的知识,而如何高效和准确的发现这些知识就基本决定了各大互联网公司在激烈竞争环境中的位置。首先,以Google为首的技术型互联网公司提出了MapReduce的技术框架,利用廉价的PC服务器集群,大规模并发处理批量事务。 利用文件系统存放非结构化数据,加上完善的备份和容灾策略,这套经济实惠的大数据解决方案与之前昂贵的企业小型机集群+商业数据库方案相比,不仅没有丢失性能,而且还赢在了可扩展性上。
之前,我们在设计一个数据中心解决方案的前期,就要考虑到方案实施后的可扩展性。通常的方法是预估今后一段时期内的业务量和数据量,加入多余的计算单元(CPU)和存储,以备不时只需。 这样的方式直接导致了前期一次性投资的巨大,并且即使这样也依然无法保证计算需求和存储超出设计量时的系统性能。而一旦需要扩容,问题就会接踵而来。首先是商业并行数据库通常需要各节点物理同构,也就是具有近似的计算和存储能力。而随着硬件的更新,我们通常加入的新硬件都会强于已有的硬件。
这样,旧硬件就成为了系统的瓶颈。为了保证系统性能,我们不得不把旧硬件逐步替换掉,经济成本损失巨大。其次,即使是当前最强的商业并行数据库,其所能管理的数据节点也只是在几十或上百这个数量级,这主要是由于架构上的设计问题,所以其可扩展性必然有限。 而MapReduce+GFS框架,不受上述问题的困扰。需要扩容了,只需增加个机柜,加入适当的计算单元和存储,集群系统会自动分配和调度这些资源,丝毫不影响现有系统的运行。如今,我们用得更多的是Google MapReduce的开源实现,即Hadoop。
除了计算模型的发展,与此同时,人们也在关注着数据存储模型。传统的关系型数据库由于其规范的设计、友好的查询语言、高效的数据处理在线事务的能力,长时间地占据了市场的主导地位。 然而,其严格的设计定式、为保证强一致性而放弃性能、可扩展性差等问题在大数据分析中被逐渐暴露。随之而来,NoSQL数据存储模型开始风行。NoSQL,也有人理解为Not Only SQL,并不是一种特定的数据存储模型,它是一类非关系型数据库的统称。其特点是:没有固定的数据表模式、可以分布式和水平扩展。NoSQL并不是单纯的反对关系型数据库,而是针对其缺点的一种补充和扩展。典型的NoSQL数据存储模型有文档存储、键-值存储、图存储、对象数据库、列存储等。而比较流行的,不得不提到Google提出的Bigtable。 Bigtable是一种用于管理海量结构化数据的分布式存储系统,其数据通常可以跨成千个节点进行分布式存储,总数据量可达PB级(10的15次方字节,106GB)。HBase是其开源实现。
如今,在开源社区,围绕Google MapReduce框架,成长出了一批优秀的开源项目。这些项目在技术和实现上相互支持和依托,逐渐形成了一个特有的生态系统。这里借用Cloudera所描绘的架构图来展现Hadoop生态系统。这个系统为我们实现优质廉价的大数据分析提供了坚实的技术基础。 综上所述,面对大数据分析的挑战,不管是计算模型还是存储模型技术都有了超前的进步。然而,仅凭借当前的技术,我们准备好面对健康云上的大数据分析的挑战了吗?下一节,我们将重点分析医疗数据的特有性质为大数据分析带来的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12