
维斯塔斯利用 IBM 大数据分析实现“智慧风能”
IBM近日宣布,丹麦能源公司维斯塔斯 (Vestas Wind Systems)将利用业界领先的 IBM 大数据分析软件和卓越的 IBM 系统优化风力涡轮机配置方案,从而实现最高效的能量输出。对于可再生能源行业而言,风力涡轮机的选址和配置是一项重大挑战。维斯塔斯正是希望应对该项挑战,将公司业务拓展到全新市场,并积极促进风能在全球的普及。
通过在IBM “烈焰风暴”超级计算机上运行 IBM BigInsights 软件,维斯塔斯公司得以分析诸多类型的拍字节结构化和非结构化数据:如气象报告、潮汐相位、地理空间与传感器数据、卫星图像、森林砍伐地图,以及用于精确安装定位的气象建模研究等――这些以前需要数周时间完成的分析工作现在只需不到一小时即可完成。
维斯塔斯技术研发厂房选址和预测部副总裁 Lars Christian Christensen 表示:“维斯塔斯提供的涡轮机通常都要服役数十年,因此客户要求在安装之前了解涡轮机的能源输出量和投资回报率。通过使用 IBM 的软件和系统,我们现在可以迅速回答这些问题,从而有利锁定新的风能市场,帮助客户实现雄心勃勃的可再生能源目标。” 在选址过程中,涡轮机一旦投入运转,维斯塔斯工程师就会使用全新的软件和超级计算机预测其性能,包括分析各个叶片对气候变化的反应,并确定最佳维护时间。
在未来四年内,该公司将有望对更多类型、规模更大的气象数据集进行分析,其分析量届时可达20拍字节以上。 如果能源公司安装风力涡轮机时定位不正确,涡轮机产出的电力便不足以为风能投资带来合理的回报,也无法保持较低的电力成本。涡轮机正确定位的主要因素包括空气湍流和风向,以及空间、生态和美学方面的考量。 据悉,维斯塔斯在丹麦的厂房选址与预测部门将充分运用 IBM 在分析上的专长,为客户设计新一代风力技术。
届时,IBM 将安排一支大数据分析项目专家团队为该部门提供全天候24小时技术支持。此外,维斯塔斯能够以虚拟访问方式访问IBM位于硅谷的大数据开发实验室,此举将进一步帮助其探索发掘分析技术在风能领域的全新应用途径。 IBM 信息管理软件总经理 Arvind Krishna 表示:“维斯塔斯与IBM的合作展现了大型组织如何利用大数据分析和超级计算机制定智慧商务决策,在有力推动增长的同时解决大数据这个全球最紧迫的问题。现在,我们正在帮助客户在不受数据传播速度和数据来源的限制下从各种类型数据中获得洞见。我们相信这种至关重要的能力将为整个行业带来变革。”
据美国风能协会报告显示,如果美国的风力发电容量到 2030 年能增加到 20%,全国便可以减少至少 7600 吨二氧化碳排放,并节省 4 万亿加仑的电力行业用水,以及12% 的天然气消费需求。在欧洲,对于加速风力发电场交付和选址的技术需求也日渐增长。德国能源与公共事业协会最新报告显示,2011 年上半年,德国的电力产量中 20.8% 来自风力等可再生能源,该数字创下历史新高。新西兰也在2011年采取了一项十分积极的能源战略,要求国内 90% 的电力均采用风力等可再生能源发电。 IBM InfoSphere BigInsights 软件是 200 余名 IBM 研究院科学家历经 4 年潜心开发的成果。该软件采用开源技术 Apache Hadoop,可提供大规模并行处理框架、太字节到拍字节级别数据的可扩展存储,并可通过其 BigSheets 组件支持情景假设。BigInsights 是 IBM 大数据软件平台的重要组成部分,该平台还包含 InfoSphere Streams 软件,可实时分析流入组织的数据,并通过检测其变化了解数据中是否出现了新的模式或趋势。
维斯塔斯公司在 1222 台相互连接的 System x iDataPlex 服务器上运行 BigInsights 软件,这些服务器经过工作负荷优化,共同组成了 “烈焰风暴” 超级计算机,每秒钟能进行 150 万亿次运算――相当于每名丹麦公民每秒进行 3000 万次计算。在全球超级计算机 500 强名单中,Firestorm 名列第 53 位,同时,它还是这份名单上的第三大商用系统,并以其更卓越的能效取代了维斯塔斯最初使用的惠普系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22