
维斯塔斯利用 IBM 大数据分析实现“智慧风能”
IBM近日宣布,丹麦能源公司维斯塔斯 (Vestas Wind Systems)将利用业界领先的 IBM 大数据分析软件和卓越的 IBM 系统优化风力涡轮机配置方案,从而实现最高效的能量输出。对于可再生能源行业而言,风力涡轮机的选址和配置是一项重大挑战。维斯塔斯正是希望应对该项挑战,将公司业务拓展到全新市场,并积极促进风能在全球的普及。
通过在IBM “烈焰风暴”超级计算机上运行 IBM BigInsights 软件,维斯塔斯公司得以分析诸多类型的拍字节结构化和非结构化数据:如气象报告、潮汐相位、地理空间与传感器数据、卫星图像、森林砍伐地图,以及用于精确安装定位的气象建模研究等――这些以前需要数周时间完成的分析工作现在只需不到一小时即可完成。
维斯塔斯技术研发厂房选址和预测部副总裁 Lars Christian Christensen 表示:“维斯塔斯提供的涡轮机通常都要服役数十年,因此客户要求在安装之前了解涡轮机的能源输出量和投资回报率。通过使用 IBM 的软件和系统,我们现在可以迅速回答这些问题,从而有利锁定新的风能市场,帮助客户实现雄心勃勃的可再生能源目标。” 在选址过程中,涡轮机一旦投入运转,维斯塔斯工程师就会使用全新的软件和超级计算机预测其性能,包括分析各个叶片对气候变化的反应,并确定最佳维护时间。
在未来四年内,该公司将有望对更多类型、规模更大的气象数据集进行分析,其分析量届时可达20拍字节以上。 如果能源公司安装风力涡轮机时定位不正确,涡轮机产出的电力便不足以为风能投资带来合理的回报,也无法保持较低的电力成本。涡轮机正确定位的主要因素包括空气湍流和风向,以及空间、生态和美学方面的考量。 据悉,维斯塔斯在丹麦的厂房选址与预测部门将充分运用 IBM 在分析上的专长,为客户设计新一代风力技术。
届时,IBM 将安排一支大数据分析项目专家团队为该部门提供全天候24小时技术支持。此外,维斯塔斯能够以虚拟访问方式访问IBM位于硅谷的大数据开发实验室,此举将进一步帮助其探索发掘分析技术在风能领域的全新应用途径。 IBM 信息管理软件总经理 Arvind Krishna 表示:“维斯塔斯与IBM的合作展现了大型组织如何利用大数据分析和超级计算机制定智慧商务决策,在有力推动增长的同时解决大数据这个全球最紧迫的问题。现在,我们正在帮助客户在不受数据传播速度和数据来源的限制下从各种类型数据中获得洞见。我们相信这种至关重要的能力将为整个行业带来变革。”
据美国风能协会报告显示,如果美国的风力发电容量到 2030 年能增加到 20%,全国便可以减少至少 7600 吨二氧化碳排放,并节省 4 万亿加仑的电力行业用水,以及12% 的天然气消费需求。在欧洲,对于加速风力发电场交付和选址的技术需求也日渐增长。德国能源与公共事业协会最新报告显示,2011 年上半年,德国的电力产量中 20.8% 来自风力等可再生能源,该数字创下历史新高。新西兰也在2011年采取了一项十分积极的能源战略,要求国内 90% 的电力均采用风力等可再生能源发电。 IBM InfoSphere BigInsights 软件是 200 余名 IBM 研究院科学家历经 4 年潜心开发的成果。该软件采用开源技术 Apache Hadoop,可提供大规模并行处理框架、太字节到拍字节级别数据的可扩展存储,并可通过其 BigSheets 组件支持情景假设。BigInsights 是 IBM 大数据软件平台的重要组成部分,该平台还包含 InfoSphere Streams 软件,可实时分析流入组织的数据,并通过检测其变化了解数据中是否出现了新的模式或趋势。
维斯塔斯公司在 1222 台相互连接的 System x iDataPlex 服务器上运行 BigInsights 软件,这些服务器经过工作负荷优化,共同组成了 “烈焰风暴” 超级计算机,每秒钟能进行 150 万亿次运算――相当于每名丹麦公民每秒进行 3000 万次计算。在全球超级计算机 500 强名单中,Firestorm 名列第 53 位,同时,它还是这份名单上的第三大商用系统,并以其更卓越的能效取代了维斯塔斯最初使用的惠普系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30