
企业大数据分析:值得期待的大趋势(1)_数据分析培训
据国外媒体报道,据市场研究公司idc预测,2015年大数据市场规模将从2010年的32亿美元增长到170亿美元,复合年增长率为40%。大数据是一个庞大的新的领域,其中的数据集可以增长的非常庞大,以至于使用传统的数据库管理工具也很难处理。处理这种问题所需要的新工具、框架、硬件、软件和服务是一个巨大的市场机会。随着企业用户越来越多地需要连续不断地访问数据,好的大数据工具集将以最低的成本和接近实时的速度提供可伸缩的、高性能的分析。通过分析这种数据,企业可得到更大的智能以及竞争优势。下面是hadoop和大数据专业厂商mapr共同创始人和首席执行官约翰·施罗德(john schroeder)对2014大数据市场的预测。
1. sql拥有大数据的最大潜力
用于hadoop(分布式计算)的sql的发展能够让商业分析师利用自己的技能和选择的sql工具执行大数据项目。开发人员可以选择hive、drill和impala等apache项目,以及选择hadapt、hawq和splice machine等公司的专有技术。
2. 尽管如此 sql还面临挑战
sql需要数据结构。而集中的结构化数据可引起延迟并且需要人工管理。sql还限制分析类型。过分强调sql将延迟机构全面利用其数据价值的努力和延迟反应。
3. 身份识别是主要的数据安全问题
随着hadoop(分布式计算)中提供的接入控制能力的猛烈攻击,机构迅速认识到线路级身份识别是必要的基础。没有充分的身份识别,任何更高级的控制都很容易被绕过,妨碍预定的安全计划。
4. 数据错误变成学习机会
2014年机构将出现许多数据错误。数据错误将表明基础的来源系统的问题吗?数据错误是在下游分析中出现偏差导致的数据提取问题吗?数据错误将表明定义差异或者缺少跨部门和业务部门的一致性吗?2014年将看到解决数据异常问题。
5. 出现可运行的hadoop
2014年将看到hadoop在各个行业中的生产部署显着增加。这将显示出hadoop在运营中的实力。在那里,生产应用与分析结合在一起能够提供可以衡量的商业优势,如在客户化零售建议、诈骗检测和试验传感器数据进行规范的维护等应用中提供这些优势。
6. 更多的数据仓库将部署企业数据中心
数据中心把数据提取处理和数据从企业数据仓库卸载到hadoop。作为一个核心的中心企业中心,数据中心要便宜10倍,能够对额外的处理或者新的应用进行更多的分析。
7. 新的以数据为中心的应用将成为强制性的
利用大数据的能力将在2014年成为竞争的武器。更多的公司将使用大数据和hadoop准确地针对个人消费者的偏爱追逐赚钱的追加销售和交叉销售的机会,更好地缓解风险以及减少生产和开销成本。
8. 数据成为数据中心的核心
机构将从开发者过渡到大数据计划中。it部门将越来越多地担负定义支持多种应用的数据基础设施的任务,把重点集中在部署、处理和保护一个机构的核心资产所需要的基础设施方面。
9. 搜索将成为非结构化的查询语言
2013年有大量的用于hadoop的sql计划。2014年将是这种非结构化查询语言成为重点的一年。把搜索集成到hadoop将为查找重要信息的企业用户提供一种简单和直观的方法。搜索引擎还是包括推荐引擎在内的许多发现和分析应用的核心。
10. hadoop将获得地位
hadoop将继续取代其它it开支,颠覆企业数据仓库和企业存储。例如,甲骨文的主要营收目标在过去的10个季度里有5个季度没有实现。teradata在过去的5个季度有4个季度没有实现营收和利润目标。
11. hadoop仍需要帮助才能成为主流应用
更多的机构认识到apache hadoop本身还没有准备好在企业应用。apache hadoop不是为系统管理或者灾难恢复等统一企业it流程设计的。企业将继续推进混合的解决方案,把架构技术创新与apache hadoop的开源软件结合在一起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14