京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业大数据分析:值得期待的大趋势(1)_数据分析培训
据国外媒体报道,据市场研究公司idc预测,2015年大数据市场规模将从2010年的32亿美元增长到170亿美元,复合年增长率为40%。大数据是一个庞大的新的领域,其中的数据集可以增长的非常庞大,以至于使用传统的数据库管理工具也很难处理。处理这种问题所需要的新工具、框架、硬件、软件和服务是一个巨大的市场机会。随着企业用户越来越多地需要连续不断地访问数据,好的大数据工具集将以最低的成本和接近实时的速度提供可伸缩的、高性能的分析。通过分析这种数据,企业可得到更大的智能以及竞争优势。下面是hadoop和大数据专业厂商mapr共同创始人和首席执行官约翰·施罗德(john schroeder)对2014大数据市场的预测。
1. sql拥有大数据的最大潜力
用于hadoop(分布式计算)的sql的发展能够让商业分析师利用自己的技能和选择的sql工具执行大数据项目。开发人员可以选择hive、drill和impala等apache项目,以及选择hadapt、hawq和splice machine等公司的专有技术。
2. 尽管如此 sql还面临挑战
sql需要数据结构。而集中的结构化数据可引起延迟并且需要人工管理。sql还限制分析类型。过分强调sql将延迟机构全面利用其数据价值的努力和延迟反应。
3. 身份识别是主要的数据安全问题
随着hadoop(分布式计算)中提供的接入控制能力的猛烈攻击,机构迅速认识到线路级身份识别是必要的基础。没有充分的身份识别,任何更高级的控制都很容易被绕过,妨碍预定的安全计划。
4. 数据错误变成学习机会
2014年机构将出现许多数据错误。数据错误将表明基础的来源系统的问题吗?数据错误是在下游分析中出现偏差导致的数据提取问题吗?数据错误将表明定义差异或者缺少跨部门和业务部门的一致性吗?2014年将看到解决数据异常问题。
5. 出现可运行的hadoop
2014年将看到hadoop在各个行业中的生产部署显着增加。这将显示出hadoop在运营中的实力。在那里,生产应用与分析结合在一起能够提供可以衡量的商业优势,如在客户化零售建议、诈骗检测和试验传感器数据进行规范的维护等应用中提供这些优势。
6. 更多的数据仓库将部署企业数据中心
数据中心把数据提取处理和数据从企业数据仓库卸载到hadoop。作为一个核心的中心企业中心,数据中心要便宜10倍,能够对额外的处理或者新的应用进行更多的分析。
7. 新的以数据为中心的应用将成为强制性的
利用大数据的能力将在2014年成为竞争的武器。更多的公司将使用大数据和hadoop准确地针对个人消费者的偏爱追逐赚钱的追加销售和交叉销售的机会,更好地缓解风险以及减少生产和开销成本。
8. 数据成为数据中心的核心
机构将从开发者过渡到大数据计划中。it部门将越来越多地担负定义支持多种应用的数据基础设施的任务,把重点集中在部署、处理和保护一个机构的核心资产所需要的基础设施方面。
9. 搜索将成为非结构化的查询语言
2013年有大量的用于hadoop的sql计划。2014年将是这种非结构化查询语言成为重点的一年。把搜索集成到hadoop将为查找重要信息的企业用户提供一种简单和直观的方法。搜索引擎还是包括推荐引擎在内的许多发现和分析应用的核心。
10. hadoop将获得地位
hadoop将继续取代其它it开支,颠覆企业数据仓库和企业存储。例如,甲骨文的主要营收目标在过去的10个季度里有5个季度没有实现。teradata在过去的5个季度有4个季度没有实现营收和利润目标。
11. hadoop仍需要帮助才能成为主流应用
更多的机构认识到apache hadoop本身还没有准备好在企业应用。apache hadoop不是为系统管理或者灾难恢复等统一企业it流程设计的。企业将继续推进混合的解决方案,把架构技术创新与apache hadoop的开源软件结合在一起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12