
数据分析揭示VC界的“贝比·鲁斯”效应
"如何打出全垒打:我会用尽我十二成的全部功力进行挥杆,就像要将棒球给击穿一样...你对球棒握得越实,你击打棒球的力度就会越大,球就能飞得越远。在我用尽吃奶的力进行挥杆的时候,我有可能大力命中,也有很大的可能是三振出局收场。” -- 贝比·鲁斯
众所周知,那些刚从事VC行业的新兵所碰到的最困难的问题之一,就是如何内化“贝比·鲁斯效应”这个概念。
如果要让所有的投资组合都产生高额的投资回报率,你必须对其中的每一个投资都应用上精确的评估分析方法。但是令人惊讶的是,包括来自赌马、赌场、以及投资等的更行各业的领军人物,他们都强调的却是另外一面,投行称之为”贝比·鲁斯效应“:虽然贝比·鲁斯(卓越的VC)有过不少的三振出局(失败/亏损的投资)的经历,但这并不妨碍他成为史上最伟大的击球手(风头公司)之一。 -- 出自"贝比·鲁斯效应:频率和量级“
贝比·鲁斯效应在不同种类的投资中都会碰上,但是在风投行业尤为显著。如注明投资人Peter Thiel所观察的一样:
事实上[风投]回报率是呈非常严重的偏态分布的。一个VC对这个偏态分布认知的越深入,他就越会是个优秀的VC。而糟糕的VC则倾向于认为回报曲线是成正态分布的,比如,误以为所有的公司都是在同等条件下诞生的,只是有些最终做死了,有些半死不活,而有些却在成长着而已。而事实上它们是遵循幂次法则的分布规律的(更多有关Peter Thiel对幂次法则和正态分布的描述,请查看本人官网之前的一篇文章《创业圣经《从0到1》读书笔记精简版》)。
贝比·鲁斯效应之所以这么难以内化主要是因为人们心理上都倾向于逃避亏损。行为经济学早有非常著名的演示,表明人们对于损失一定金额的情绪低落程度,远大于赚取同等金额的情绪的愉悦程度。亏损总会让人感觉不爽,即使这个亏损只是成功的投资组合战略中的一小部分而已。
当人们谈论到这个话题的时候,往往是难以深入,因为此前我们很难得到一份综合有效的风投公司的效益数据。而今天,大家走运了,非常感谢在众多风投基金公司中都备受尊重的投资人Horsley Bridge,他给我提供了这数百个风投公司自1985年起的投资回报率相关的匿名历史数据。
事实如我们预期一样,回报是非常集中的:大约占有这些公司所有投资组合的6%的投资(大约占所有投资金额的4.5%),产生的投资回报率却占有了全部投资回报率的60个百分比左右。下面我们再对这些数据作深入的挖深,看下优秀的VC和糟糕的VC是怎么被区分开来的。
全垒打(编者注:也就是说该风投公司不少的投资组合都是获得超过10倍投资回报率的): 如我们所预期的,成功的风投公司拥有更多的“全垒打”级别的投资。
(本文的所有图表中,X轴指代的是VC基金的效益:靠右的代表卓越的VC基金,靠左的代表糟糕的VC基金。)
卓越的风投基金公司不但会有更多的高投资回报率投资组合,且这些投资组合的投资回报率往往都是高得超乎想象的。请看下图中描述的低效益和高效益的风投基金在都是全垒打(超过10倍的投资回报率)的情况下的投资回报率的差别。
通常好的风投基金的投资回报率是在20倍左右,而卓越的风投基金的投资回报率则高达70倍,如Bill Curley曾经说过的:“风投不仅仅是一个全垒打的生意,还是一个大灌满的生意。“
三振出局(失败的投资):这里的Y轴代表的是一个风投基金的众多投资组合中亏损的投资所占的百分比。
从图中可以得知,其实无论是糟糕的投资公司还是卓越的投资公司,他们的投资组合中都有不少一部分是亏损的。所以说风投行业本身就是一门高风险的生意。
大家可以看到上图是呈U字型分布的,也就是说卓越的风投公司其实比普通的(处于图表中间的)风投公司更容易投到亏损的公司。所以这里卓越的风投基金公司刚好印证了上面所说的”贝比·鲁斯效应“效应:它们挥杆(投资)力度越大,有可能大力命中,也有可能三振出局(亏损)收场。但是你如果不敢冒着大量的三振出局(失败)的风险,你就不可能有大满贯(众多投资组合无数倍的投资回报率)的可能。比如,根据幂次法则,只要你的众多投资组合中有一个如Facebook般的公司,就算你所有的其他投资组合都是亏钱的,你依然会赚得盘满钵满!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22