
数据分析揭示VC界的“贝比·鲁斯”效应
"如何打出全垒打:我会用尽我十二成的全部功力进行挥杆,就像要将棒球给击穿一样...你对球棒握得越实,你击打棒球的力度就会越大,球就能飞得越远。在我用尽吃奶的力进行挥杆的时候,我有可能大力命中,也有很大的可能是三振出局收场。” -- 贝比·鲁斯
众所周知,那些刚从事VC行业的新兵所碰到的最困难的问题之一,就是如何内化“贝比·鲁斯效应”这个概念。
如果要让所有的投资组合都产生高额的投资回报率,你必须对其中的每一个投资都应用上精确的评估分析方法。但是令人惊讶的是,包括来自赌马、赌场、以及投资等的更行各业的领军人物,他们都强调的却是另外一面,投行称之为”贝比·鲁斯效应“:虽然贝比·鲁斯(卓越的VC)有过不少的三振出局(失败/亏损的投资)的经历,但这并不妨碍他成为史上最伟大的击球手(风头公司)之一。 -- 出自"贝比·鲁斯效应:频率和量级“
贝比·鲁斯效应在不同种类的投资中都会碰上,但是在风投行业尤为显著。如注明投资人Peter Thiel所观察的一样:
事实上[风投]回报率是呈非常严重的偏态分布的。一个VC对这个偏态分布认知的越深入,他就越会是个优秀的VC。而糟糕的VC则倾向于认为回报曲线是成正态分布的,比如,误以为所有的公司都是在同等条件下诞生的,只是有些最终做死了,有些半死不活,而有些却在成长着而已。而事实上它们是遵循幂次法则的分布规律的(更多有关Peter Thiel对幂次法则和正态分布的描述,请查看本人官网之前的一篇文章《创业圣经《从0到1》读书笔记精简版》)。
贝比·鲁斯效应之所以这么难以内化主要是因为人们心理上都倾向于逃避亏损。行为经济学早有非常著名的演示,表明人们对于损失一定金额的情绪低落程度,远大于赚取同等金额的情绪的愉悦程度。亏损总会让人感觉不爽,即使这个亏损只是成功的投资组合战略中的一小部分而已。
当人们谈论到这个话题的时候,往往是难以深入,因为此前我们很难得到一份综合有效的风投公司的效益数据。而今天,大家走运了,非常感谢在众多风投基金公司中都备受尊重的投资人Horsley Bridge,他给我提供了这数百个风投公司自1985年起的投资回报率相关的匿名历史数据。
事实如我们预期一样,回报是非常集中的:大约占有这些公司所有投资组合的6%的投资(大约占所有投资金额的4.5%),产生的投资回报率却占有了全部投资回报率的60个百分比左右。下面我们再对这些数据作深入的挖深,看下优秀的VC和糟糕的VC是怎么被区分开来的。
全垒打(编者注:也就是说该风投公司不少的投资组合都是获得超过10倍投资回报率的): 如我们所预期的,成功的风投公司拥有更多的“全垒打”级别的投资。
(本文的所有图表中,X轴指代的是VC基金的效益:靠右的代表卓越的VC基金,靠左的代表糟糕的VC基金。)
卓越的风投基金公司不但会有更多的高投资回报率投资组合,且这些投资组合的投资回报率往往都是高得超乎想象的。请看下图中描述的低效益和高效益的风投基金在都是全垒打(超过10倍的投资回报率)的情况下的投资回报率的差别。
通常好的风投基金的投资回报率是在20倍左右,而卓越的风投基金的投资回报率则高达70倍,如Bill Curley曾经说过的:“风投不仅仅是一个全垒打的生意,还是一个大灌满的生意。“
三振出局(失败的投资):这里的Y轴代表的是一个风投基金的众多投资组合中亏损的投资所占的百分比。
从图中可以得知,其实无论是糟糕的投资公司还是卓越的投资公司,他们的投资组合中都有不少一部分是亏损的。所以说风投行业本身就是一门高风险的生意。
大家可以看到上图是呈U字型分布的,也就是说卓越的风投公司其实比普通的(处于图表中间的)风投公司更容易投到亏损的公司。所以这里卓越的风投基金公司刚好印证了上面所说的”贝比·鲁斯效应“效应:它们挥杆(投资)力度越大,有可能大力命中,也有可能三振出局(亏损)收场。但是你如果不敢冒着大量的三振出局(失败)的风险,你就不可能有大满贯(众多投资组合无数倍的投资回报率)的可能。比如,根据幂次法则,只要你的众多投资组合中有一个如Facebook般的公司,就算你所有的其他投资组合都是亏钱的,你依然会赚得盘满钵满!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26