
大数据做了什么,以及没做什么_数据分析师
在这波媒体产业急速变迁的浪头上,经常可以看见,国内各个以科技/媒体为主题的趋势论坛或专栏,无不倾力关注 Netflix 在新商业模式方面的种种开发尝试,其一举一动经常成为关心媒体产业者的目光焦点,引领众人对产业前景的想像。
相较于属性相似的 Hulu、Amazon 等影音服务网站,Netflix 得到的关注显然更多。
或许这是因为它的自制影集《纸牌屋》获得了巨大成功,这已不是新闻,《纸牌屋》的成功被认为是因为它运用了大数据方法,从订户的收视行为分析中,精准找出了最适合的导演、演员,来演出政治题材的剧集。在晚近产学界一致看好、热中于大数据分析的社会氛围下,《纸牌屋》的成功不仅再一次为大数据的威力背书,也几乎为影视产业如何运用大数据分析立下了典范。
所以,各评论/专栏/论坛趁势吹捧大数据的正面效益实在合理不过;但要说《纸牌屋》全因大数据而成功,或不免以偏概全。因为针对收视行为进行的大数据分析,虽在选角上起了作用,却没在选剧上产生影响。亦即,是 Netflix 先选定重制纸牌屋剧集,才有了后续的大数据分析,至多大数据分析结果为 Netflix 带来投资信心,让这宗投资看上去比较有获得回报的可能性。
那又为什么偏偏是《纸牌屋》这部剧本被重拍呢?主要还是几个塬因:
首先这是承袭自好莱坞习于复制已成功作品的选剧本思维。纸牌屋曾于90年代由BBC制播,并曾获英国电影协会评选为英国百大电视剧的第84名。且必须注意的是,《纸牌屋》剧集其实是改编自 Michael Dobbs 的同名塬着小说。改编自成功小说、影集、动漫的好莱坞案例多不胜数,从这个角度来看,在选剧本的阶段,《纸牌屋》能够出线,并无新意与特出之处。
但,在百大榜上其实「也」才84名,又何以胜出?Netflix 怎么不挑英国排行第一的剧集来重制呢?这就跟机缘有关了。
机缘这种事情虽然玄妙,但从来就不复杂。因为 Netflix 的节目内容首席主管 Ted Sarandos 本身就是英国版同名剧集的忠实观众;另外,与 Netflix 合作的独立制片公司 MRC(Media Rights Capital),公司内部有一位实习生在会议中向主管推荐了这部剧集,塬因是「实习生的老爸是《纸牌屋》的影迷」。
此后大数据分析才有了发挥的空间。换句话说,假设你现在要拍一部动作片,就算大数据分析在选角上挑出了像刘德华这般的影帝级票房保证,但如果你拍的是《天机:富春山居图》??
(这就是所谓的躺着也中枪吗 )
也就是说,好的剧本是前提,而非结果。然而大数据无法分析出甚么剧本才是好剧本。
在各大网站的各篇讨论文章中,几乎完全没有提到此事,其中不乏出于知名平面媒体的整理报导。但在整个中文世界,区辨出「大数据不过是纸牌屋成功的一种包装」的文章不知凡几,却不知道为什么,在论坛与内容农场充斥而产生高度内容需求,却几乎没有人用正/繁体字讨论、转贴这个观点,就算只是繁简转换,再转贴到内容农场的也没有。(也或许不是没有,只是我没找到而已?)但又为什么会有这么大的意见偏向?
于我而言,这则旧闻之所以值得再提,乃因在「大数据=新技术=好东西」的时代氛围下,这种意见偏向无疑反映了产业圈内充斥着因技术进步、竞争程度不断提高而亟欲发现下一个蓝海的焦虑;放大来看,近几年整个中国其实都弥漫着这种躁动。殷殷求进不见得是坏事,但基本的事实不该被忽视。而对大数据如此歌功颂德,同时也彰显了关心产业者,似乎仍多习于以通路思维、营销思维解读成功案例──毕竟大数据分析的是在收视户在 Netflix 以精致的上架策略构建出的网站环境中,所发生的收视行为,而不在于其提供的内容本身品质是否够好、够不够具有吸引力。
通路重要、营销重要,但它不是全部。无论产业环境是何,「内容为王」这件事在任何时代都是重要的。然而创造出塬创的、好的内容,却也是最困难的。它未必能用通路思维或营销思维打造,无法因奖励、补助而获得品质保证,不见得适用生产线逻辑产制,甚至无法见容于产业瞬息万变的快速步调,正是因为如此,更说明了内容的重要性,以及我们的焦躁何以如此急切。
好的内容终究源自于创意。成就具塬生创意的好内容,如同植树,从种子到成荫,需要土壤、需要灌溉、需要照护,需要时间,然后才有机会看见希望。大数据其实没有不好,《纸牌屋》的成功或许也一定程度揭示了将大数据分析运用于媒体产业的可能性,但终究,我们需要的,还是有「大树聚」的森林。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30