京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于卖家数据分析的10个问题_数据分析师
支付宝数据首席分析师,你怎么看待“数据挖掘”这个词? 所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1 ...
1,作为支付宝数据首席分析师,你怎么看待“数据挖掘”这个词?
所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1992年的美国,每周四或者每周五下午5点-7点的时间形成的连锁销售。但是这个联合销售的方法并不适合任何时间和任何场合,单纯地剥离其背景本身,谈数据挖掘就是一个很泛的事情。
2,你认为,支付宝的数据和淘宝的数据有什么不一样?
我不在淘宝工作,所以很难全面地去了解淘宝内的数据。简单来说,支付宝的数据很广,它是以结果为导向的,显示的是买家交易最后一步动作,而淘宝探讨的是影响其购买的多项数据,是过程数据,它的数据更深,更细分。
3,作为产品出身的数据分析师,按道理你应该对影响消费者购买以及过程数据更感兴趣,为什么会选择支付宝这种以结果为导向的交易数据分析呢?
支付宝也有其特殊的优势。从我个人而言,选择一个公司做数据分析有几个理由,第一,公司高层对数据的理解和重视程度;第二,公司的数据量足够大,足够丰富,能和你本身的研究方向相契合;第三,公司文化与就是个人性格的匹配,这三点支付宝都符合。
4,你个人认为数据能帮助卖家解决什么问题?
其实数据的核心就是将复杂问题简单化。今天的数据是否成功主要看两方面:第一是从时间(Righttime)上,数据出现的时间能否在你最需要它的时候出现;第二,从技术层面讲,有关数据的技术门槛能不能再降低。如果你能让你的用户用2秒时间,只要按一个箭头就可看到他想看的数据,那么这些数据就更有价值的。
5,作为产品出身的人,你看数据的角度会和单纯的数据分析师有什么不一样么?
从我本身而言,我认为不懂商业的人别谈数据。因为做任何数据都应该从问题出发。比如,你在用数据解决问题之前,首先要问自己几个问题:what is the problem(是什么问题?);who(用户是谁);why me(为什么是我做?);why now(为什么是现在做?);What scale(用户层大么?)。这几个问题,如果都是YES,那么这个产品就一定值得做。
6,如果你是支付宝的CEO,你最关心支付宝的哪些数据?
这就要看你所指的时间性了,比如周度,月度,甚至年度是不一样的。如果你的问题是指周度(week)敏感的话而我的时间只有十分钟的话我的答案会是:第一,新/老用户支付成功率;第二,新增用户数的周环比及最近峰比较;第三,十大业务量最高的支付场景中那一个超出了我的预期。第四,商户及用户上周投诉的分类排行榜。
7,现在很多卖家开口闭口就会必谈pv.uv和转化率,你认为这是卖家最应该关心的数据吗?
我不是卖家,但是这个问题的答案是:显然不是。数据是需要背景的,并不是任何类目,任何级别的卖家他关心的都应该是所谓的流量和转化率等。比如京东前一段时间最关注的是物流是否给力,因此京东的CEO最想要看的就是送达率的情况,而如果老板关注的是新品成功率,又或者是追单率等数据,这些数据都不是空想,而是经过沉淀和契合卖家自身发展背景的。因此,肯定不是所有的卖家在任何阶段关心的数据都是一样。
8,你觉得作为淘宝卖家,应该如何使用数据?
卖家更应该学会关注搜索数据(Buyer demanddata),而不是交易数据,比如作为一个女装卖家,你输入“新款”,会发现,其实早在3月11日,就应该是春装打折的时候,如果你对搜索数据敏感,就更容易发现商机,而不是只盯着所谓的交易数据不放。要注意的是其实百分之九十影响你的数据不一定在站内。
9,如果你是淘宝卖家,你会关注哪些数据?
如果我是卖家,我关心的数据有两个纬度:第一,新用户从那个渠道找到我,看了什么? 买了什么。;第二,存量用户中的留存情况。
10,你觉得,一个公司或者一个卖家,如何合理利用数据来制定KPI呢?
很多公司的KPI大多是以业务目标为导向,很少以用户为导向。其实更好的KPI导向应该是以用户为核心。我们常说用户很重要,但是用户到底有多重要,那些用户对你更重要,可以量化吗?。其实要知道用户对你的感知只要问一个问题就可以,用户失去你,他会不会不爽?比如失去了QQ密码,用户会慌,没有了支付宝,对用户影响大么?从这个角度去分析,自然能找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17