京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业IT规划:大数据分析离不开认知计算
网络专家Mike Jude表示,大数据分析离不开认知计算,所以构建认知计算框架时不能掉以轻心。
人们越来越关注大数据在企业内部的应用,但却很少关注这些大型数据应用程序一旦建立后是如何被有效利用的。大多数情况下,企业都会给架构师提供一个允许数据专家查询这些数据存储情况的分析环境。换句话说,我们并没有民主化这些数据,也没有让它们做各个层面的决策,而是我们创建了一个新的IT象牙塔:一个由身穿白色实验服的人来帮我们做相应的查询工作。
当然,在大的数据应用环境下可以使用分析软件应用程序来完成一般的查询工作。但是,很多重要的企业业务和网络相关的决策不能交给那些通过几个简单的问题来选择的分析设备。相反,我们需要的是一个分析和大数据工具,这个工具能够把所有可用数据应用到特殊问题上,还可以利用那些模糊数据。这就是认知计算:使用智能设备从大量数据集中得出结论。
“沃森”的价值
IBM公司研究认知计算在大数据分析上的应用已经有一段时间了。早在2011年,IBM就在美国智力竞赛节目Jeopardy中展示了其“沃森”认知计算技术。在那个游戏中,“沃森”属于专家级别,击败了两个人类选手。那么“沃森”是如何赢的呢?其实是通过分析用来支持该游戏而创建的大规模数据库中的问答实现的。
从那时开始,IBM进一步开发“沃森”技术,并将其应用于需要在复杂的数据集中快速找到答案的基于云的应用中。它支持前端自然语言,也可以用来分析大型数据集合中的关系。特别要提到的是Watson Explorer和Watson Analytics应用,它们允许决策者从字面上考虑在特定领域中的可用数据来确认他们的决策。“沃森”不是通过分析无用数据,而是通过利用企业中所有的大数据应用资产来保证分析的准确性。
最近有一篇关于“沃森”的新闻,IBM展示了其利用所有可用数据来解决问题的价值。在此新闻事件中,IBM展示了“沃森”是如何通过匹配癌症患者的遗传信息来改善患者治疗方案的能力。由于医学研究的工作量是成倍增长的,而且非常复杂,如果由医生来做几乎是不可能完成的任务。但是“沃森”可以,它可以从数据库中快速匹配,找出精准的治疗方案,并向主治医生提供可行建议,甚至当医生选择了治疗方案后记录相关治疗方法,向主治医生学习经验。以后会越来越快速精准的。
有一种方法可以证明认知计算的价值
IBM通过一个提供免费访问的在线门户网站将其Watson Analytics提供给开发人员和企业IT人员,以研究其功能。在实际应用中,IBM通过订阅方式向企业和IT部门销售其“沃森”云环境。另外,IBM刚刚宣布了一个新的企业级混合云产品,希望能够保持其内部部署的计算环境。
当然,“沃森”并不是分析和大数据认知计算的唯一方法。如今有很多人工智能初创企业在研究这一领域。比如SmartAction,它是一个人工智能交互式语音应答的开发工具,利用IVA平台来处理客户呼叫中心的工作。另外,Cognitive Systems Institute也是在这一领域用来跟踪事态发展的很好的资源。
但是,“沃森”和它们并不一样,因为它是第一个设计用于一般用途的市场成熟的认知设备。有了开放的API,它显然是用于创建一个生态认知系统,这将最终推动一个新的理论计算趋势。
企业IT专业人员需要逐渐熟悉认知计算技术、先进的分析技术和人工智能技术。根据Frost & Sullivan Stratecast的一位分析师预测,数据很快会呈指数增长,到2020年,企业将有超过20 zetabytes(20万亿千兆字节)的数据。这种庞大数量的数据存储工作都将变得非常有挑战性,使用像spreadsheets这种工具来分析数据更是变得不可能。所以需要更高级的工具。
但是,实施认知计算并不简单。在没有外界帮助下开发基础设施来支持认知计算不是一般的IT部门可以做的。“沃森”也是通过前期大量的专业服务来确定用于支持和微调该方法的用例。这个企业案例依赖于业务指标作为这一过程的一部分,因此,一旦实施了应用程序,就可以确定投资回报率(ROI)。对于任何技术的实施,业务指标都必不可少:这很难衡量一个新技术的影响,除非你知道它和谁比较。
这里有一个问题是,是否所有的前期努力都有回报。Stratecast认为,在每个垂直行业里,了解认知计算的公司的业务都具有无可比拟的竞争优势。认知计算是转型:它将重新定义竞争格局。它是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16