
移动互联网和大数据将带来“新财富鸿沟”
在人类历史上,每一次重大的技术革 命或商业模式革 命,都推动了人类社会前行。但与此同时,也带来人类不同族群之间的力量失衡和财富失衡,总有一部分族群加快了发展速度,掌控了更多的财富,也有一部分族群被甩在后面。
最佳管理智囊档案
在18世纪下半叶,随着蒸汽机的发明,欧洲开始进入了工业文明时代,而此时亚洲等许多地区还处在农耕文明时代,两者之间的财富鸿沟日渐明显。从此时开始,全球的财富中心开始向西方转移。
在20世纪初,随着股票交易制度及相关制度的完善,纽约开始成为全球第一大金融中心,纽约证券交易所、华尔街、摩根已经开始成为当代金融业的标志。在这一轮的金融业革 命之后,也同样拉开了美国和欧洲的财富鸿沟。自纽约成为世界金融体系的太阳之后,包括伦敦在内的世界其他金融市场,从此成为围绕着这个太阳旋转的行星。
在20世纪下半叶,随着在电子、通讯、半导体、软件等方面的大量创新涌现,硅谷开始成为全球信息产业的圣地,成为全球信息产业当之无愧的领导者。在这一轮信息技术革 命之后,美国与亚洲等其它地区的财富鸿沟进一步拉大,随着美国技术源源不断的出口全球,财富和权力进一步集中到西方。
移动互联网和大数据时代的到来,事实上也是一场技术革 命与商业模式革 命,与前面的历史类似,这场革 命同样会拉大不同族群之间的财富鸿沟。
首先,在不同国家之间,在全球移动互联网和大数据体系中所处位置是不同的,比拼的是谁更接近生态体系的基石位置,从而能真正把握住未来发展的命脉,包括手机操作系统、大数据底层平台、开源软硬件平台、大规模社交平台、电子商务交易平台等。现在看来,这些主流平台极有可能集中于少数几个国家之间。互联网是没有国界的,但互联网企业是有国界的,这样集中于少数国家的技术、平台与数据,将拉大不同国家之间的财富鸿沟,甚至形成数字化的垄断霸权。
其次,以中国为例,中心城市与中小城镇的数字化差距也将日渐明显。从城市竞争的角度看,中心城市将占据核心数据资源与核心平台资源,对于商机、人才、知识具有垄断性控制力,是中小城镇无法比拟的。中心城市对于未来移动互联网和大数据的运用将愈发娴熟,使其不断提升城市竞争力。而中小城镇将长期徘徊在这一轮新技术革 命的边缘处。这样使得财富鸿沟进一步拉大,大型城市就像一个黑洞一样,源源不断地把发展中的财富吸附进来。
第三,在不同行业之间,可以发现,如果说以往,行业界限泾渭分明,各有各的财富空间。但现在则不同,以阿里巴巴、腾讯等企业为代表的互联网业,正像“站在门口的野蛮人”一样,冲进了传统行业的领地,可以看到,传媒、出版、零售、教育、交通、旅游、影音、IT等诸多行业都面临价值被互联网掠夺的风险。其中的要点在于互联网公司掌握了用户资源和行为数据,纷纷搭建了自己的云计算平台和大数据平台,比传统行业更懂它们的用户,定价更低,服务更好,这将自然造成不同行业之间的财富鸿沟。
第四,在不同受教育人群之间,是否善于运用移动互联网或大数据的优势,这一点将构成不同人群职业发展的显著差异。移动互联网和大数据既是新技术、新应用,同时也是新思维、新观念,移动互联网所蕴含的“在线”、“连接”的观念极大改善了人与社会资源的配置,大数据所蕴含的“相关性”“规律性”的观念将增强人的洞察力。因此,未来人的职场竞争,无论从事什么行业,在很大程度上比拼的是是否形成了新观念,善用新工具。不同的理念和不同的学习能力,将拉大不同人群之间的财富鸿沟。
移动互联网和大数据在推动社会发展的同时,也极有可能带来新的新财富鸿沟。效率并不必然带来公平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02