京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		物流业的大数据何时不再是口号
(文章来源:长风网)
	
	早上七点,旭日东升,某某物流公司已经开始了工作,今天的任务是在11点之前给8家公司配送货物。
 
从货物出库,选择车辆和司机、装货只花了半个小时,因为手持终端可以让仓管员在偌大的仓库中准备找到货物,内部系统根据之前的数据统计和分析,推荐出性能良好、载货情况合适的车辆和精神状态良好的司机,连装货顺序系统也帮规划好。
 
虽然是上班早高峰,但系统推荐了一条合理的路线,避开了拥堵路段,按照往常习惯,司机会先去A公司,但系统预测出所需货物的公司近日接待情况欠佳,需要等 候半个小时才能收货,司机毫不犹豫遵循系统的建议先去了B公司。途中,车辆忽然停了下来,原来它探测到20米外有一个滚动的皮球,接着便冲出一个小孩,原 来车辆已经预测出其中的危险……
 
上述是小编对未来物流配送场景的构想,从物流公司接收到配送任务、货物出库、安排车辆和司机、装车、出行路线、避开危险等这一系列的行为中,都离不开大数 据技术的支撑,通过海量数据的收集、存储、转化、预测等,最后得出科学的、快捷的、可靠的数据分析与建议,大数据在物流行业的使用可达到降低成本、提高效 益的目的。未来,大数据在物流行业的普及应用或许正如小编所想吧。
 
大数据已经炒烂,物流行业使用大数据是否得心应手?
 
大数据这个概念已经提出来好几年,曾一度被炒作至顶峰,众多企业扎堆推出大数据解决方案,资金、人力、关注度持续上升。近两年,大数据话题转向冷却,但是 大数据分析的价值会继续下去,企业关注的重点应该是如何采取正确的策略、流程和方法从大数据分析中获得价值。在这样的大环境下,物流企业应该如何去真正把 握大数据价值,实现跨越式发展?
 
马云的菜鸟网络可以说是顺应大数据时代应运而生的,为打造物流大数据平台,菜鸟网络与国内物流快递企业合作,进一步开放彼此数据,联合打造国内首家物流大 数据分享平台,平台内容涉及云计算、信息产品、信息安全等多个方面,未来可实现快递市场分析、质量指数服务、客户挖掘、数据预测等功能。还有各式各类的云 物流平台的涌现,货运APP、车联网的诞生,这都是互联网和大数据作用之下的产物,不管是数据的采集、优化的方式、服务内容的选择还是服务的精准性,都离 不开大数据。
 
宽带资本基金董事长田溯宁曾经表示,3-5年内会看到大数据在各个方面的应用。然而在物流行业的应用是否还停留在起步阶段?物流市场的预测、物流中心的选 址、配送路线的优化等等是否已经真正应用了大数据技术?小编根据物流各界的反应以及人们的切身感受来总结,发现大数据的概念与落地存在相当的距离。现实 中,一些物流公司的产品打着大数据的旗号进入市场,强调自己是做大数据的,但其实他们的数据分析能力惨不忍睹,存在招摇撞骗的嫌疑。北大教授王汉生就说 过:大数据更像是一个口号,一种公共宣传的需要。我们都知道大数据好用,但是理想很丰满,现实很骨干,怎么来,怎么用依然还没弄清楚,大数据不过是被人不 断神化!
 
物流行业挖掘大数据宝藏有何难题?
 
大数据是金矿银矿,但不是金山银山,它是需要技术挖掘的,这些巨大的商业价值在挖掘的过程中也面临着数据采集、质量控制、技术转化、管理政策等诸多方面的挑战。怎样获取这些大数据是一个问题,需在资金投入、研发团队打造方面的决心和魄力。
 
1、传统思维的禁锢。大数据首先引领的是思维的变革,再到技术的变革,但我国物流业相对发达国家来说比较传统,从业人员的整体素质不高,企业高层对大数据的重视程度不够,思维不够开拓,从而影响技术的变革。
 
2、采集困难。海量的数据需要高精准的硬件设备采集,但我国物流行业上所运用的硬件设备相对落后,加上数据变化快和有效期短的特点,数据质量和有效性难以保证。
 
3、数据共享困难。大数据需要数以万计的数据作为支撑,并不是一个公司就能解决的问题,物流行业的散、小、乱、差并不利用数据的融通,反复号召的联盟组织也是联而不盟的状态。
 
4、没有核心技术人才。大数据本身的多样性、复杂性增加了大数据在处理和管理上的难度,所有,专业的数据管理人员是关键,在物流企业既懂得数据挖掘、数据分析技术,又熟悉物流企业运营的复合型技术人才尤其难得。此外,数据的开发和隐私也是应该权衡的问题。
 
5、数据的转化是挑战。数据的呈现形式的复杂多样的,文本、图片、视频等非结构化数据需要转化为结构化数据,在物流企业的运营过程中,非结构化数据的存储必须要先转化为结构化的数据才能够存储,因此,引进先进的数据转化技术是物流企业数据质量的保证。
 
总之,大数据已经在物流企业渗透,引起物流企业普遍关注,大数据所隐藏信息价值不会轻易袒露,高喊口号之外需要物流企业的决心和魄力去挖掘。当然,我们相信,随着思维的转变、技术的进步,管理的变革,大数据一定有实质性变化,行动终会有成果。 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27