
数据科学家:黑客与数据分析师的完美结合
数据科学家大显神通的时刻到了!但究竟什么是数据科学家?数据科学家需要具备怎样的技能?他们为何与众不同?
大数据时代的到来驱动了数据,带宽和处理能力成指数级的增长。现今数据科学这一新兴领域已经引发了众人极大的兴趣。Amazon前首席科学家表示“数据是原油,但石油需要加以提炼后才能使用,从事海量数据处理的公司就是炼油厂”。
如今,所有规模的组织都在尝试探索如何从大数据中挖掘出有价值信息。数据科学家具备从大数据挖掘“金矿”的能力,并根据挖掘出的信息用来对大量移动设备数据、社交媒体流数据、医疗成像、智能电网等领域中的趋势进行预测,同时带来巨大的商业价值。在未来5年数据科学家这一领域人才将出现供不应求的局面。这也带来了更多的工作机会。
McKinsey报告指出去年大数据强有力的增长。McKinsey同时预测在未来6年,仅在美国本土就可能面临缺乏14万至19万具备深入分析数据能力人才的情况,同时具备通过分析大数据并为企业做出有效决策的数据的管理人员和分析师也有150万人的缺口。
Ventana研究公司的分析师David Menninger指出在其公司最近所作的一项调查显示,在169位公司高管中有四分之三的人认为技术人员缺乏是企业无从应对大数据挑战的重要因素。
在上周加利福尼亚举行的Stratadata大会上超过2000人共同探讨如何应对大数据的问题。Google、Facebook、LinkedIn等企业正是因为很好挖掘到有价值的信息从而创造了巨大的利润。
Google的Hal Varian表示未来10年数据科学家将变成性感的工作,许多人认为我是在开玩笑,回过头来看,在20世纪90年代谁会猜到计算机工程师会成为性感的工作。
前LinkedIn数据科学家DJPatil表示数据科学家是具备独特技能的。Bitly首席科学家Hilary Mason表达同样的观点,他认为数据科学家是融合数学、算法,并可从大数据中寻求问题答案的人。而现任LinkedIn首席数据科学家Monica Rogati认为数据科学家是黑客和分析师组成的混合体,他们通过数据发现本质。
纽约时报研发实验室的成员Jake Porway表示数据科学家绝对是罕见的全才。数据科学家除了具备编程的能力外还需将各种来源的数据管理并利用统计学挖掘出蕴藏在内部的信息。
Kaggle总裁兼首席科学家Jeremy Howard认为一个伟大的数据科学家应具备创新、坚韧、好奇、深厚技术这四项素质。具备数据收集、数据改写、可视化、机器学习、计算机编程等技术的数据科学家使数据驱动决策并主导产品。他们更喜欢用数据说话。
以上汇集了众多对数据科学家的定义。但你觉得什么是数据科学家?你会怎么定义他们呢?最后EMC给出了他们制作的数据科学家信息图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02