
移动PM如何分析和挖掘数据
数据是一个产品每天都要盯着的东西,虽说数字也会撒谎,但是在产品设计中数据,常常作为辅助设计决策和与研发沟通的必不可少的东西之一。
1. 移动产品经理需要跟踪app的哪些数据?
在做数据分析之前,对移动产品人员来说,首先要了解在移动互联网领域,我们需要关注那些数据呢?
讨论发现,不同的产品关注的数据数据分为:基本数据、跟产品类别无关的数据和跟产品类别相关的数据。
基础数据:下载量、激活量、新增用户量、活跃用户
社交:用户分布、用户留存(次日、3日、7日、月、次月、3月)
电商:淘宝指数、网站流量、内容转换率
地图导航类:用户每日打开次数、地域分布
内容类:内容转化率(内容下载量/内容浏览量)、留存量
工具类:功能点击量、应用商城排名
其他:竞品数据(下载、激活等)
2. 如何对相关数据进行分析?
在进行数据发掘之前首先可以对产品做相应的数据建模,然后经过上线跟踪、分析,对比原来的模型,是否有遵循原来的模型。如果是模型不合理,则需要对数据模型进行矫正。如果出入较大则需要对数据进行分析,或者根据分析出来的数据 在产品上做内部测试或者灰度测试然后对比,如果原来的模型问题不大,再挖细节,分析其他数据找原因,结合数据模型,如果有问题了以后,针对问题追踪数据,进行分析。
一、对于启动,留存这些数据。主要是看异常,发现异常以后再去找寻原因和问题
二、平时某个很正常的数据突然变化,我们也会追踪,
三、在线用户,进行每日跟踪,是否呈曲线自然生长,或者出现异常。
四、活跃用户,对用户的使用频次以及有效行为进行跟踪及分析。
数据分析主要通过数据工具进行分析。数据分析主要为两种:
一、第三方数据分析工具。如友盟,可以快速的接入,节省成本,比较适合创业型公司及刚上线产品,但是无法对关键数据在突发异样时进行跟踪。
二、自己开发数据分析工具,可以对每个数据进行实时跟踪,并且快速做出产品的调整,需要足够的开发人员及成本,比较适合大型公司或者成熟型产品。
(此部分感谢Ted-PD-北京 童鞋的分享)
3.需要对那些关键指标进行挖掘?挖掘后有何意义?
在对关键指标进行发掘,不同的产品,有着不同的关键指标。比如在内容型应用中,周留存影响关于用户对功能的使用,月留存,关系用户对内容关注,次月留存,关系用户的体系。
社交:主要关注用户分布、用户留存、活跃用户、功能使用频次以及有效行为等社交行为数据分析,通过数据分析及发掘来了解用户的社交特征,最总了解用户到的社交属性优化产品的社交传播。
电商:主要淘宝指数、网站流量、收藏、购买等数据,了解用户的电商消费特征。
地图导航等工具类应用:了解功能的使用时间、区域、地段等数据,从而了解相关对相关产品的功能使用,以及路况信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02