
数据分析是很多人推崇的产品需求制定方法,用数据说话已经渐渐变成产品经理的至理名言,但不能迷信数据,毕竟数据的真实性、客观性、全面性不好保证,而且,数据和人的大脑总是差一些“灵气”。
问:怎么评价产品经理拿数据说话这回事?如何做数据分析?
现在PM动不动就拿数据说话,找RD跑数据,有些数据是肯定必要的,有些数据是可要可不要的,比如对于某项目,PM凭经验可说4级以上的用户可xxx,这时候会有人跳出来问,为什么不是3级、5级?拿出数据来。 实际上真看了数据又能看出什么呢?看完后无非是再次验证了4级,而且看了数据后主管判断还是PM来下的。 再比如有的功能是肯定要上的,但领导会说,调研一下有没有必要,评估数据搞半个月,评估的结果是:可做。 实际上,该功能整个平台的用户都希望做,是没有必要耗费人力评估的,只要做就可以了。 很多数据和评估是必要的,但有些很形式化,请问有意义吗?
数据分析是一种靠谱的产品研究方法, 这玩意有很多误区, 也不能迷信, 最终到头来还是要人来做决策
1.忽略沉默的用户
二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观察、分析、统计。发现大多数的弹孔,都集中在飞机的机翼上;只有少数弹孔位于驾驶舱。从数据上说, 加固机翼的性价比最高. 但实际情况缺恰恰相反, 驾驶舱才是最应加固的地方, 因为驾驶舱被击中的飞机几乎都没飞回来.
"发声"的数据是最好获取的, 但如果没把这些沉默的数据考虑进来, 那么这种数据分析是不靠谱的. 所以除了数据的结果, 还得尝试解读这些数据. 而解读数据就完全依赖人了.
2.把沉默用户当做支持和反对的中间态
u=3965659086,275639697&fm=23&gp=0
2家网站A和B,都经营类似的业务,都有稳定的用户群。它们都进行了类似的网站界面改版。改版之后,网站A没有得到用户的赞扬,反而遭到很多用户的臭骂;而网站B既没有用户夸它,也没有用户骂它。如果从数据来看, 应该是网站B的改版相对更成功, 因为没有用户表达不满。但事实并非如此。网站A虽然遭到很多用户痛骂,但说明还有很多用户在乎它;对于网站B,用户对它已经不关心它了.
网站A指的是Facebook,网站B是微软旗下的Live Space。
3.把数据作为决策的唯一标准
通常认为数据分析指导工作是一种高性价比的做法, 不容易犯错, 对于代表资方的管理层来说, 比起依赖于人的决策, 依赖于数据的决策似乎更稳健.
这种决策在从0.5向0.8的产品改进上, 可能是有效的. 因为一个已有的产品, 数据就摆在那. 100个用户50个访问超时, 解决了这个问题, 就提升了50%的效果.
但对于从0到0.1的新产品上, 由于数据很难获取, 需要花大力气在获取模拟数据上. 往往是用一周时间去想明白一个做两个小时的产品该不该做的问题. 而且模拟的结果还和最终实际相差很远.
A/B test或是原型系统, 先做出来, 再去验证, 在一些场合下比先拿数据要有效的多.
4.认为数据是绝对客观的
为了减少内耗, 往往依赖于数据来做决断. 我一直认为数据本身是带有主观性的, 完全客观的数据是没有的. 数据的获取方法, 数据的解读方法, 数据的统计方法, 都是人的决策. 一份数据拿出两个相反的结论来也不是没有可能. 即使主观上没有偏向性, 也受限于方法和视野.
决策上最终起作用的还是人不是数据. 虽然人有那么多的不确定性, 还可能出现争论, 扯皮, 不敢承担责任.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11