京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能为我们的物流运输车队管理做什么
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的特点可以概括为4V,即Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据正在影响社会,改变企业的未来,从中能获得更多的收益。
而随着车联网\物联网的发展,车辆电子化程度越来越高,加上GPS软硬件的配载,使得车辆时时刻刻都在上传各种各样的数据,也逐渐形成了车辆大数据。车辆大数据不仅仅是单纯的车辆燃油、维修、位置等信息,还包含车辆相关的上下游供应商数据、车辆运营数据、交通数据、事故数据等等。
双语:且看DHL物流集团如何有效管理大数据
全球著名的邮递和物流集团DHL,用大数据Resilience360方案管理物流和供应链风险
物流两点之间哪条路线最短?看UPS如何用大数据优化送货路线
大数据正新酝造一个支柱产业——物流
数据管理的核心在于预测。车辆在运行时,会时刻自动上传大量数据,相比于互联网中很多人为不可控因素产生的数据而言,更具完整性和精确性,因此,车辆大数据在预测方面的作用尤为重要。如,预测交通堵塞的地段、实时交通信息、主动安全驾驶预测、车辆线路规划、驾驶者驾驶行为分析等。在大数据时代,分析交通流量,已经不去在乎导致交通堵塞的原因,而重视相关性,给出某个时段某个路段会发生拥堵的预测,根据预测结果,可以制定更好的运行线路,提升运力和效率。
燃油数据
谈到车辆管理,首先会想到一个老大难的问题,就是燃油管理,燃油数据也是车队数据中较重要的数据基础。燃油数据的准确性一直是困扰车辆管理的大难题,原因很多,比如燃油成本占比较大,且成本一直高居不下;跑冒滴漏现象难以管理等。因此管理好燃油对于车辆成本的降低有很重要的作用,通过燃油数据可以有效的、客观的反映燃油耗损问题,燃油数据的对比可以为燃油管理提供客观的管理依据。燃油数据采集一般有三大来源:
1.人工录入:通过考核登记燃油使用情况得到的数据;
2.燃油供应商后台数据:每次加油数据都会自动记录到各大供应商系统后台;
3.燃油监控设备记录:技术手段得到的燃油实时使用数据。
三大数据之间可以相互监控燃油使用情况,有效的防止燃油被盗。使用加油卡、定点加油和专人加油制度,可以减少加油时燃油被盗的风险;时间对比可以知道加油数据是否虚假;GPS里程数,可以作为码表里程的参考依据;燃油曲线可以有效直观的了解到燃油使用情况,可以快速了解有异常的燃油耗损车辆。
单车燃油的月对比可以了解本车燃油使用情况,同类型车辆的月对比、年对比可以了解同类车辆燃油使用情况,不同品牌的燃油对比,还可以为车辆采购提供参考。其中车辆监控系统的燃油曲线,还可以直观的反映基本的然油使用情况,减少查看时间,提高监控效率。
维修数据
燃油数据是常谈的话题,而维修数据常却常被遗漏,维修费用也是车辆费用的关键成本之一。但目前物流企业的维修数据还停留在人工录入阶段,4S店记录的维修数据只用于自身产品的改进和提升,有些维修厂甚至还停留在原始的维修车间水平,使得维修数据中心难以形成和共享。维修厂家/4S店缺少系统的数据库建设,且和用户之间也没有进行有效的数据共享,用户需要花费大量时间统计数据,而且由于数据样本数不够,又无法得到有效的分析结果用于管理。
车辆的维修成本、燃油耗损等受影响的因素很多,车型、品牌、年限、路况等。而如果我们能有足够的样本分析不同车型、不同年限、不同品牌等的车辆在不同路况、各种负重、使用时间长短等情况上的维修数据对比,那么就可以在企业车辆采购上给予足够的选择参考,也可以在企业报废车辆时提供数据参考。
而随着车辆电子化程度越来越高,传感器大量被应用于新一代车辆上,我们想实时了解发动机各部件的运行情况成为可能。我们可以了解轮胎胎压、机油和燃油使用情况、变速器和发动机运行是否正常等等各种信息,通过故障反馈信息可以快速定位和解决这些故障,减少维修时间,可以提醒需要保养和维修的部件,及时保养和维修,通过预警提醒减少事故的发生。
比如,当车辆行驶过程中,可以直接使用感应器对轮胎进行监测,也可以通过转速来监测胎压(当轮胎气压降低,由于车辆重量原因会使轮胎的滚动半径变小,导致转速比其他车辆快来监测轮胎气压),实时的监测,可以对轮胎漏气、低气压进行报警,并实时提醒司机和后台人员,确保安全行驶。车辆状态和故障信息传输到终端并共享给相关人员,从生产到使用各车辆供应链环节的人员可以从数据中得到各自所需的信息,以提高和改善产品或工作。如对用户而言,可以提高安全、提升效率;对于车辆企业可以得到反馈数据,更好的更新、提升产品性能;对于维修企业,可以有效的提供维修服务,提升企业竞争力。
单纯统计单车总维修费,是粗线条管理,得出的数据基本无法用于分析。细分管理到每个部位的数据分析,可以更清晰的了解车辆维修和车况的详细信息。比如同类车辆哪些部位是容易出问题的;将同一部位多车的维修费用进行对比,可以预防维修费用造假,也可以作为维修费用参考;维修里程数可以计算各部件的寿命信息等。
通过建立配件库或车辆管理系统的维修库,可以快速查询配件更换或维修价格,可以快速查找同类故障原因。
详细的维修数据,减少对专业人才的过分依赖,标准化的数据分析和使用流程,可以为车辆的采购、报废提供依据。若通过数据发现车辆的关键部位无法达到使用要求的车辆,或维修投入和产出率不高,就应该被淘汰更换新车。如果只统计总维修费,那么统计后的维修费用高,指的是哪些部位维修费用高?这种统计很容易造成被误判成车辆维修费过高而被淘汰。也可能关键部位已经严重受损,但统计后发现均维修费是较低的,而未报废却影响产出率,这些都将造成管理层决策失误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03