京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能为我们的物流运输车队管理做什么
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的特点可以概括为4V,即Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据正在影响社会,改变企业的未来,从中能获得更多的收益。
而随着车联网\物联网的发展,车辆电子化程度越来越高,加上GPS软硬件的配载,使得车辆时时刻刻都在上传各种各样的数据,也逐渐形成了车辆大数据。车辆大数据不仅仅是单纯的车辆燃油、维修、位置等信息,还包含车辆相关的上下游供应商数据、车辆运营数据、交通数据、事故数据等等。
双语:且看DHL物流集团如何有效管理大数据
全球著名的邮递和物流集团DHL,用大数据Resilience360方案管理物流和供应链风险
物流两点之间哪条路线最短?看UPS如何用大数据优化送货路线
大数据正新酝造一个支柱产业——物流
数据管理的核心在于预测。车辆在运行时,会时刻自动上传大量数据,相比于互联网中很多人为不可控因素产生的数据而言,更具完整性和精确性,因此,车辆大数据在预测方面的作用尤为重要。如,预测交通堵塞的地段、实时交通信息、主动安全驾驶预测、车辆线路规划、驾驶者驾驶行为分析等。在大数据时代,分析交通流量,已经不去在乎导致交通堵塞的原因,而重视相关性,给出某个时段某个路段会发生拥堵的预测,根据预测结果,可以制定更好的运行线路,提升运力和效率。
燃油数据
谈到车辆管理,首先会想到一个老大难的问题,就是燃油管理,燃油数据也是车队数据中较重要的数据基础。燃油数据的准确性一直是困扰车辆管理的大难题,原因很多,比如燃油成本占比较大,且成本一直高居不下;跑冒滴漏现象难以管理等。因此管理好燃油对于车辆成本的降低有很重要的作用,通过燃油数据可以有效的、客观的反映燃油耗损问题,燃油数据的对比可以为燃油管理提供客观的管理依据。燃油数据采集一般有三大来源:
1.人工录入:通过考核登记燃油使用情况得到的数据;
2.燃油供应商后台数据:每次加油数据都会自动记录到各大供应商系统后台;
3.燃油监控设备记录:技术手段得到的燃油实时使用数据。
三大数据之间可以相互监控燃油使用情况,有效的防止燃油被盗。使用加油卡、定点加油和专人加油制度,可以减少加油时燃油被盗的风险;时间对比可以知道加油数据是否虚假;GPS里程数,可以作为码表里程的参考依据;燃油曲线可以有效直观的了解到燃油使用情况,可以快速了解有异常的燃油耗损车辆。
单车燃油的月对比可以了解本车燃油使用情况,同类型车辆的月对比、年对比可以了解同类车辆燃油使用情况,不同品牌的燃油对比,还可以为车辆采购提供参考。其中车辆监控系统的燃油曲线,还可以直观的反映基本的然油使用情况,减少查看时间,提高监控效率。
维修数据
燃油数据是常谈的话题,而维修数据常却常被遗漏,维修费用也是车辆费用的关键成本之一。但目前物流企业的维修数据还停留在人工录入阶段,4S店记录的维修数据只用于自身产品的改进和提升,有些维修厂甚至还停留在原始的维修车间水平,使得维修数据中心难以形成和共享。维修厂家/4S店缺少系统的数据库建设,且和用户之间也没有进行有效的数据共享,用户需要花费大量时间统计数据,而且由于数据样本数不够,又无法得到有效的分析结果用于管理。
车辆的维修成本、燃油耗损等受影响的因素很多,车型、品牌、年限、路况等。而如果我们能有足够的样本分析不同车型、不同年限、不同品牌等的车辆在不同路况、各种负重、使用时间长短等情况上的维修数据对比,那么就可以在企业车辆采购上给予足够的选择参考,也可以在企业报废车辆时提供数据参考。
而随着车辆电子化程度越来越高,传感器大量被应用于新一代车辆上,我们想实时了解发动机各部件的运行情况成为可能。我们可以了解轮胎胎压、机油和燃油使用情况、变速器和发动机运行是否正常等等各种信息,通过故障反馈信息可以快速定位和解决这些故障,减少维修时间,可以提醒需要保养和维修的部件,及时保养和维修,通过预警提醒减少事故的发生。
比如,当车辆行驶过程中,可以直接使用感应器对轮胎进行监测,也可以通过转速来监测胎压(当轮胎气压降低,由于车辆重量原因会使轮胎的滚动半径变小,导致转速比其他车辆快来监测轮胎气压),实时的监测,可以对轮胎漏气、低气压进行报警,并实时提醒司机和后台人员,确保安全行驶。车辆状态和故障信息传输到终端并共享给相关人员,从生产到使用各车辆供应链环节的人员可以从数据中得到各自所需的信息,以提高和改善产品或工作。如对用户而言,可以提高安全、提升效率;对于车辆企业可以得到反馈数据,更好的更新、提升产品性能;对于维修企业,可以有效的提供维修服务,提升企业竞争力。
单纯统计单车总维修费,是粗线条管理,得出的数据基本无法用于分析。细分管理到每个部位的数据分析,可以更清晰的了解车辆维修和车况的详细信息。比如同类车辆哪些部位是容易出问题的;将同一部位多车的维修费用进行对比,可以预防维修费用造假,也可以作为维修费用参考;维修里程数可以计算各部件的寿命信息等。
通过建立配件库或车辆管理系统的维修库,可以快速查询配件更换或维修价格,可以快速查找同类故障原因。
详细的维修数据,减少对专业人才的过分依赖,标准化的数据分析和使用流程,可以为车辆的采购、报废提供依据。若通过数据发现车辆的关键部位无法达到使用要求的车辆,或维修投入和产出率不高,就应该被淘汰更换新车。如果只统计总维修费,那么统计后的维修费用高,指的是哪些部位维修费用高?这种统计很容易造成被误判成车辆维修费过高而被淘汰。也可能关键部位已经严重受损,但统计后发现均维修费是较低的,而未报废却影响产出率,这些都将造成管理层决策失误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27