京公网安备 11010802034615号
经营许可证编号:京B2-20210330
重构大数据:探索健康险 “治未病”新模式
5月以来,一系列国家大力支持商业健康险发展的政策频现。作为深化医药卫生体制改革、发展健康服务业、促进经济提质增效升级的“生力军”,商业健康保险发展已势如破竹。随着互联网和大数据时代的到来,特别是在“数字人生”和“数字医疗”的大背景下,健康险和寿险经营的基础环境也将发生根本性的变化,因此在机遇和挑战面前,“重构数据增强险企创新核心竞争力”、“依靠大数据运行提高效率和服务水平”、“探索"治未病"新模式”等成为业内共识。
数据积累不足——
掣肘商业健康险发展
随着中国人慢性病、重病发病率的增加,很多家庭为支付医疗费用承受巨大经济压力。在全民健康保障体系中,商业健康保险不仅弥补了基本医疗保障范围的不足,还可满足不同收入人群、不同职业人群、不同风险人群多样化、多层次的医疗保障需要。
近年来,我国商业健康保险发展成绩显著。2014年,我国商业健康保险保费收入1587亿元,同比增长高达41%。截至目前,保险行业已经推出商业健康保险产品2300多个,健康保险的服务功能也从基本医疗费用补偿,向预防、治疗、康复为一体的综合性健康管理转变。
“但是,目前我国商业健康保险产品的创新能力不足,风险管理能力也有待提高。与此同时,受制于商业健康保险风险覆盖范围相对狭窄、保障方式相对单一、经营成本偏高等因素,多数保险公司的健康险业务经营处于亏损状态。”谈及我国商业健康保险的发展现状,中国保险学会会长姚庆海表示,商业健康险的经营主体在医疗健康管理产业链中能动性低,专业化的健康管理服务水平还有待提高。保险机构不仅难以共享公立医疗机构的诊疗信息,而且难以深入介入和参与人们的疾病诊疗与健康管理流程。健康保险数据平台不够健全且缺少数据积累,也要求商业健康保险对互联网、大数据、基因工程等科技的整合能力进一步加强。
重构大数据——
险企创新核心竞争力
“实际上,购买健康险客户的根本诉求并不是要得到保险赔偿,保险公司应当在客户健康管理方面下工夫,让客户真实地感受到保险公司提供的不仅仅是保障承诺,更重要的是基于专业管理的个性化健康状态维护,可以提供从家庭、社区以及医院包括养老院和康复中心的全方位平台解决方案。”有保险专家对记者表示,保险业应该通过健康保险这一平台,集合并成为广大被保险人的“利益代理人”,利用大数据、物联网、基因工程和人工智能等前沿科技,形成一种倒逼机制,推动我国卫生和医疗体制改革,同时利用这些技术,探索全新的保险商业和服务模式。
当前,在“互联网+商业健康保险”的发展模式下,移动互联、大数据、可穿戴设备、便携式检测设备等领域的新进展,都将推动对健康风险的事前预防、实时监控、实时响应和快速服务,商业健康保险的运行效率和服务水平有望得到革命性的提升。
因此,解构和重构数据将成为未来保险公司创新的核心能力。这不仅需要保险公司建立跨学科的“科学团队”跟踪和研究新技术和新领域,尤其需要捕捉前沿领域的技术,并根据业务发展和提高效率的需要,构建全新的商业模式。
运用大数据——
“治未病”不再遥远
《黄帝内经》中有句话:“圣人不治已病治未病”。对于保险业而言,从业务发展的角度看,需要将“治未病”作为经营重点,为客户提供高水平的健康管理服务。从自身经营的角度看,应当思考行业发展的“治未病”问题,未雨绸缪,探索新模式。
应该说,大数据分析在保障产品设计及精算定价、理赔运营管理、医疗机构管理、市场和销售拓展等医疗保险经营的各个领域均有很大应用价值。日前新华保险(行情62.4 +1.58%,咨询)发布的2014年理赔数据报告,就用“数据事实”,深入剖析了客户理赔及疾病健康发生趋势,为客户提供了一份清晰的“治未病”蓝图。
数据显示,2014年新华保险个险理赔累计给付26.49亿元,较2013年增长19.16%。其中重疾和特种疾病的增幅最为显著,分别为29.55%和166.98%。从理赔身故类数据看,占比前三位分别为恶性肿瘤、意外事故、心脑血管疾病。而在恶性肿瘤赔付种类中,乳腺恶性肿瘤的赔付占比最高,为17.67%;其次是甲状腺恶性肿瘤14.72%;再次是支气管和肺部恶性肿瘤11.43%。从重疾赔付金额看,61.40%的重疾保额在0-5万元,占比最高,仅1.69%客户重疾保额高于15万元。从赔付年龄看,40-49岁客户重疾赔付占比最大,为40.52%,出险客户中年龄在30-59岁的占比达86.93%,该年龄客户是家庭经济收入来源的主力。
站在理赔角度,新华保险数据分析专家给出健康险投保建议:
一要首选重疾。因重疾呈现年轻化趋势,且年龄小费率低,健康状况好,易标准承保,因此宜尽早投保。
二要必备意外。在身故赔付中,意外事故占比15.95%,因此在计划保险保障时,务必配备意外险,尤其是风险较高的男性。
三要保额充足。从理赔数据看,大多数客户的身故/重疾保额在10万元以下,保障功能体现不明显,建议重新检视自己的保单,通过产品组合的方式,提升保障额度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06