京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国信息通信研究院:我国大数据市场处在非常初级阶段
6月3日消息(子月)在近日举办的“云计算发展与政策论坛”第五次高端会议上,“云计算发展与政策论坛”发布了《中国大数据发展调查报告(2015年)》、《中国私有云发展调查报告(2015年)》,《中国公共云服务发展调查报告(2015年)》等成果。
我国大数据市场处在非常初级阶段
根据《中国大数据发展调查报告(2015年)》显示,2014年,我国大数据市场规模84亿,预计2015年接近116亿,增速是38%。与2014年中国信息产业规模是15万亿相比,大数据市场还是一个非常小的市场,还是非常初级的阶段。
中国信息通信研究院总工余晓晖分析说,从结构上来看,我国大数据市场与国外相比既有相同也有不同。具体来说,我国大数据市场,软件占比较高,服务占比较低。
余晓晖进一步表示,目前,影响我国大数据发展的因素中,首先是政策方面的不足,例如隐私问题、数据开发问题。政策法规的滞后性是我国大数据应用面临的最大瓶颈。第二是数据资源的短缺,在我国这一点很突出。我国数据资源总量不足,这是全社会自愿的不足。余晓晖表示,从企业角度看,一半以上的企业数据量是在200TB以上,大部分企业是在50TB—500TB之间。1/3企业用了很多外部购买的数据,互联网平台数据,有38.7%的企业用互联网平台数据。
从基础层面来看,目前的企业里面用的大数据里,大部分数据还是结构化的,接近74%的企业。其次是网页数据,比例超过一半。余晓晖表示,未来结构化数据仍然是大数据里面非常重要的部分,但非结构化数据会越来越多。
从云计算实现方式上看,目前60%的企业选择是自建,37%的企业通过云服务的方式建设。余晓晖表示,在目前的阶段里,仍然有相当多的企业认为自建大数据平台,如果这个大数据平台是服务企业核心业务流程的话,企业宁愿自建。
超过1/3的企业更换过公有云服务商
根据《中国公共云服务发展调查报告(2015年)》显示,我国公共云服务市场规模大概在72亿元左右,比去年增长47.5%,全球包括IaaS、PaaS、SaaS基本的公共云服务市场规模在200亿美元,我国大概占到全球的4%。在细分市场里,IaaS市场增长非常快,今年IaaS市场达到26亿元人民币左右,与2013年相比增长150%,这是非常大的涨幅。SaaS规模虽然有40亿,但是增长率比较低,只有10%左右。在选择公有云服务里面,46%的用户是觉得成本比较低。
中国信息通信研究院标准所主任工程师高巍表示,75%的用户企业表示希望看到有第三方安全和质量认证。超过70%的用户表示希望完善云计算安全监管的政策。过去几年中,超过1/3的用户有更换云服务商的经历,主要是因为稳定性不高、价格因素、售后服务等问题。我国云服务商对用户的黏性还不够,所以我国的云服务商也要努力去提升自己服务的质量。
仅1/4企业把核心业务放在私有云
根据《中国私有云发展调查报告(2015年)》显示,2014年国内私有云市场规模大概在246亿人民币左右,增长速度将近30%,增速要低于公共云服务,但是要高于IT整个产业平均的增长速度。
高巍表示,对于选择私有云,和公有云有一个显着的区别,用户选择私有云首先考虑的是可控性,第二才是安全性。在私有云承载的应用里面,绝大多数企业是把企业的管理系统放在私有云上,然后是一些办公、OA等等,把核心业务放在私有云只有1/4左右。两大问题阻碍了核心业务向私有云的迁移,第一是迁移有一定的技术难度,第二是需要投资。
企业如何部署私有云呢?高巍表示,大概是一半一半,49.3%利用之前的设备,49.7%新购买服务器建设云环境,这样导致的结果是,45.8%的企业表示部署私有云以后,IT支出是增加的。高巍表示,采用私有云的企业,对于成本并不太看中,企业追求的是资源共享带来将来IT设备的方便性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01