京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度大数据在预测领域的应用_数据分析师考试
大数据对于很多人来说并不陌生,这一说法常常在我们生活中也是屡见不鲜。但是大数据到底能在中国已经发展到什么阶段了呢?美国麻省理工的阿莱克斯•彭特兰(Alex Pentland)教授在百度The BIG Talk活动上认为,中国拥有百度这样的公司,政府部门的兴趣,使得中国的大数据发展状况良好。
彭特兰认为,深度学习技术比传统人工智能更加高级,能够通过数据的搜集和发掘帮助人类更好地做出决定。而百度精确预测世界杯,是一次深度学习(Deep Learning)技术运用的成功案例,百度的大数据产品将帮助人们在更多的预测领域做出更好的选择。
百度大数据在预测领域的应用已经涵盖了城市预测、景点预测、高考预测、疾病预测等多个领域。未来,百度还将推出房地产预测、票房预测、就业预测和金融预测等大数据预测产品。
在今年4月24日的百度技术开放日上,百度CEO李彦宏推出了百度大数据引擎。百度大数据引擎一共分三个部分。
开放云:百度的大规模分布式计算和超大规模存储云。过去的百度云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。
百度的开放云拥有超过1.2万台的单集群,超过阿里飞天计划的5k集群。百度开放云还拥有CPU利用率高、弹性高、成本低等特点。百度是全球首家大规模商用ARM服务器的公司,而ARM架构的特征是能耗小和存储密度大,同时百度还是首家将GPU(图形处理器)应用在机器学习领域的公司,实现了能耗节省的目的。
数据工厂:开放云是基础设施和硬件能力,你可以把数据工厂理解为百度将海量数据组织起来的软件能力。就像数据库软件的位置一样。只不过数据工厂是被用作处理TB级甚至更大的数据。
百度数据工厂支持单词百TB异构数据查询,支持SQL-like以及更复杂的查询语句,支持各种查询业务场景。同时百度数据工厂还将承载对于TB级别大表的并发查询和扫描,大查询、低并发时每秒可达百GB,在业界已经是很领先的能力了。
百度大脑:有了大数据处理和存储的基础之后,还得有一套能够应用这些数据的算法。图灵奖获得者N.Wirth(沃斯)提出过“程序=数据结构+算法”的理论。如果说百度大数据引擎是一个程序,那么它的数据结构就是数据工厂+开放云,而算法则对应到百度大脑。
百度大脑将百度此前在人工智能方面的能力开放出来,主要是大规模机器学习能力和深度学习能力。此前它们被应用在语音、图像、文本识别,以及自然语言和语义理解方面,被应用在不少App,还通过百度Inside等平台开放给了智能硬件。现在这些能力将被用来对大数据进行智能化的分析、学习、处理、利用。百度深度神经网络拥有200亿个参数,是全球规模最大的,它拥有独立的深度学习研究院(IDL)和较早的布局,在人工智能上百度已经快了一步,现在贡献给业界表明了它要开放的决心。
彭特兰在评价百度大数据产品时说,百度已经逐渐找到了如何把纸上谈兵的数据转化为具有实际运用价值的产品的有效方式。
他还指出,百度是世界人口最多国家的第一大搜索引擎,因而在发展大数据领域具有非常好的天然优势,并且百度本身是一个强大的公司,拥有强大的技术和市场作为支撑,也正是基于此,他们成了这个行业的翘楚之一。
百度大数据也吸引了世界上最大的组织:联合国。近期联合国与百度宣布启动战略合作,共建大数据联合实验室,这也成为联合国开发计划署在全球范围内首次携手科技企业建立大数据实验室。据悉,联合国开发计划署与百度大数据联合实验室的目标是探索利用大数据解决全球性问题的创新模式。
近期,现阶段,实验室的研究重点是环保、健康两大领域,未来还将针对教育、灾害管理等人类发展的众多议题展开深入研究。
百度携手联合国开发计划署共建大数据联合实验室,意味着百度大数据已成为政府、国际组织、环保、医疗等各个领域真正的“火眼金睛”。不仅为可持续问题提供解决方案,更为建立持续跨界合作营造了全新机制。
就目前而言,大数据作为一种颠覆性的新型产业,产业估值仅为200亿美元左右,与产业的整体支出尚不成比例。
因此,尽管大数据时代已经到来,但大数据的黄金时代还尚未完全到来,至少在某些应用领域大数据还存在诸多不确定性,但是以百度的大数据联合实验室为转折点,一个大数据应用的全新模式已经开启,这也意味着一个大数据引领的新时代的来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06