京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据企业应该避免的几大错误_数据分析师考试
如果企业改变它对大数据的想法,大数据会改变企业的思路。这听起来有些像禅宗心印 (Zen Koan)。不过,这是获得突破性见解的关键:你的眼光必须超越思想的限制,思考和询问你希望从拥有的数据中得到什么。
尽管如此,许多机构出人意料地没有把这种新的思想应用到自己的大数据计划中,结果导致严重的计划失败。
错误的想法,也就是“大数据的错误”,有三个主要方面。如果不解决这些错误想法,这些错误将直接导致一些欠考虑的计划,不能提供有意义的商业价值。
由于害怕失去机会,许多机构仓促地实施大数据基础设施项目,以避免落后。麻省理工学院《史隆管理评论》(MIT Sloan Management Review)发表的一篇调查报告指出,大数据的迅速流行导致一些大型企业的执行委员会向管理人员发出如下指令:“我们不知道大数据是什么,但是,我们最好立即解决大数据的问题。”
这种下意识的反应已经导致出现一些无法实现的计划,如盲目地建造Hadoop(分布式计算)集群,含糊的目标是用12至24个月的时间,没有考虑如何帮助提高收入、节省成本或者提高竞争力的实际应用案例。这种仓促的决定显然会使大数据计划失败。
本文作者Attivio公司产品营销主管Mike Urbonas的同事Randy McLaughlin最近发现“大数据”这个词汇有许多竞争的定义,这些定义限制了这个词汇的实用性。例如,早些时候的定义让“大”等于“量”。这个定义是不完善的,并且仍然在坚持。许多人仍然错误地认为大数据是Hadoop的同义词。
这是一个问题,因为把重点放在量的方面将导致大错误。这是《哈佛商业评论》最近发表的一篇题为“更大的数据会导致更好的决策吗?”的博客文章提出的警告。这篇文章的作者引述长期的研究结果称,决策者经常为了提升自我或者证明现有的想法而有选择地使用和解释信息。仅仅增加数据量不会对目前常规的企业想法构成挑战。
这也许是许多企业设法利用庞大的数据量,只有少数企业真正取得成功的原因。这个问题的解决方案不是重新制定一个决策过程,而是重新制定一个机构的战略,不是把量作为主要技术重点,而是把管理多样性作为重点!
《哈佛商业评论》那篇文章的作者还指出,“大量”实际上过时了;金融服务公司几十年以来一直有大量的数据。目前真正新的东西是信息资源的多样性。这些资源将产生新的商业见识。
这篇文章指出,多样性的商业团队比单一的商业团队更有创造力;多种数据合并在一起会产生同样的好处。因此,我们不能说数量大的数据会导致更好的决策,而是把使用新技术、处理过程和技能的许多点连接起来的多样性的数据会导致更好的决策。通过一个统一信息接入平台,这些点的连接会迅速完成。
设想一下,把相关的和分析交易数据库与客户在社交媒体、网站、电子邮件、即时消息聊天和呼叫中心记录等地方发表的喜欢或不喜欢的意见组合在一起,其结果是一个对客户解决方案的真正的全方位的看法。这个客户解决方案提供新的可执行的见解,在最大限度提升客户服务、忠诚度以及成功的追加销售和交叉销售的同时减少客户流失。这是大数据多样性的业务转型的力量。
重要的是需要指出,越来越多的证据表明,开始获得真正的改变游戏规则的回报的机构认识到,这是通过管理多样化的信息实现的。例如,上述大数据调查报告指出,受访的大企业都谈到管理各种数据和集成多种来源的信息。这是企业使用大数据的重点。这包括使用非结构化数据。
因此,如果你的机构还没有探索把管理多样性数据作为大数据商业价值的主要推动因素和技术重点,你的机构现在要在竞争对手采取行动之前把这个工作摆正优先的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02