京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别扯大数据 !请先面朝用户_数据分析师培训
大数据很火,TED的创始人Dan Ariely这样调侃:大数据就像青少年谈性,每个人都在说,不知道谁做了,每个人认为另外人在做,所以每个人都声称自己在做……这是一句玩笑,却道出了实情,正在做大数据的企业不多。可以肯定的是,大家跃跃欲试。
大数据不止于炒作概念,已经有很多大数据应用成功的案例,如百度的旅游景点人流及舒适度预测;如淘宝的个性化购物推荐;以及小米手机的10万人互联网开发团队,等等。
大数据固然很美,也是前进的方向。“大数据的本质就是还原用户的真实需求”,阿里巴巴集团数据委员会委员长车品觉一语道破天机。那些跃跃欲试的企业,要先问自己这样一个问题:我真的关注用户的真实需求么?别急于用墙上的标语来回答,先看看你们企业是否存在以下四种情形:
第一,面朝KPI,管理层视KPI为救命稻草,分解、考核成了他们的主要工作。不管KPI分解是否合理,不与下属一起去找完成KPI的办法,不去跟踪执行,甚至默许KPI中的水分。员工视KPI为指挥棒,关乎KPI的工作,认真干,其他则可以敷衍。为了KPI不惜蒙骗用户。
第二,面朝领导,员工把听领导的话当着最好的执行,同时领导也这样理解执行。领导安排的工作必定是最重要最紧急,摆在优先处理的位置。做不做某件事的唯一理由就是领导是否安排。
第三,面朝自己,凡事先撇开自己部门以及自己的责任,在用户和同事面前,他们的口头禅是“这事儿不归我管”、“这事儿我不清楚”。
第四,面朝制度,用户来咨询、投诉,回答永远是“公司的制度”。没有沟通,没有实事求是,将公司的规定、制度强加于用户。公司的制度本意就是防止用户、员工钻空子;员工们坚信,无论如何,都不得让自己和用户违反公司制度。
面朝KPI、面朝领导、面朝自己、面朝制度,都背对着用户,能关注用户需求么?先别扯大数据,先面朝用户吧。大数据不是万能的,不关注用户需求的企业,大数据应用做得再好也无济于事——当然,也不可能做好。
面朝用户,即使没有大数据,也可以了解用户需求。搜集用户需求的途径有很多。调查问卷、焦点小组是传统有效的了解用户需求的方式。调查问卷标准化、结构化、覆盖广,可以得出具体量化的结果。而焦点小组则开放、自由,沟通深入、充分,需要专业的观察与记录,得出的是感性而非量化的结论。无论调查问卷,还是焦点小组,都是走群众路线,到用户中去,听取用户意见、建议,确保产品、方案从用户中来。不容忽视,用户热线也是很好的倾听用户的方式,无论是投诉,还是咨询,都是用户真实意见的表达。
面朝用户,即使没有大数据,也可以做出很好的产品和服务。海底捞火锅是个很好的例子。海底捞在服务质量普遍不高的餐饮业以好得“变态”的服务取胜。它通过善待员工,向员工授权,让员工满意,解放员工的大脑,让员工迸发出创新的活力,让员工发自内心的为用户提供良好的服务。当然,大数据也可以用于海底捞的决策参考或者营销活动评估,这并不矛盾。
大数据应该在我们用传统的方法不能洞察用户需求,不能改善用户体验的情况下才被请出来。一方面,如果市场调研、用户体验都不曾做过,说明压根就没关注用户需求的意识,没这意识做大数据就是浪费。另一方面,无论是建模,还是最后的结果应用,大数据都需要和实地调研、与用户的接触经验相结合。
大数据固然美好,对于关注用户需求的公司,大数据能让他们如虎添翼,更好的把握用户需求,改善用户体验。对于不关注用户需求的公司,以及那些有关注用户需求的愿望却因为面朝KPI、面朝领导、面朝自己、面朝制度而没能真正关注用户需求的公司,还是先转身,面朝用户吧!
面朝用户,从用户那里获取最真实需求信息,从用户那里获得认同与力量。
面朝用户,即使没有大数据,也能洞察用户需求,做出好的产品和服务。
当企业、员工面朝用户,树立了关注用户需求、改善用户体验的意识,再做大数据,也不迟。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15