
大数据审计:让违规资金无处遁形
随着信息技术的迅猛发展,行业应用所产生的数据呈爆炸性增长,大数据审计应时而生。去年以来,审计厅尝试运用大数据分析技术,探索审计监督新模式,撞开了一扇新的高效的“审计之门”。
“审计对数据有天然的依存关系。”5月27日,审计厅厅长黄河说,作为经济运行综合性监督部门,保持对社会经济数据的灵敏感触,深挖细掘、充分运用,是大数据时代对审计工作的内在要求和必然选择。
大数据审计到底有多神奇?审计人员如何从海量数据中发现违规资金的疑点和线索?记者追踪了一年来审计在大数据环境下的足迹。
审计数据量有多大?
一次审计调用700G数据
今年2月,审计厅电子数据审计处正式挂牌成立,负责组织开展跨行业、跨部门、跨地区的数据分析,联网审计和省直各部门(单位)电子信息系统审计,以及对电子数据进行综合分析和利用等工作。而我省大数据审计的尝试,此前早已开始。
去年初,审计厅建立起分类分步采集的数据获取机制。通过专网联结、定期拷贝与建立定期报送制相结合的方式,审计部门可以无障碍获取不同系统不同部门的电子数据信息。目前,审计数据中心已收集有省级财政国库集中支付业务、非税收入、总预算会计数据等相关数据。
以海量数据为基础,依托不同的审计分析模型,审计人员就可以有针对性地“攫取所需”了。
正在进行的税收征管审计中,审计厅专门成立的地税审计数据分析团队充分利用采集到的各类数据,构建起125个审计分析模型,覆盖了包括税务管理、税款征收、发票管理等几乎所有地税业务。分析团队查询分析了多个系统约700G的电子信息数据,在房产税、车船税、城镇土地使用税、机打发票、三代管理、小微企业税收优惠政策执行、退税等7方面新编写了21个审计方法。然后,审计人员选取国土、工商、房地产等外部涉税信息数据,与相关税收征管数据比对分析,揭示出漏征漏管税收和征管制度缺陷等各种问题,提出了有针对性的审计建议和意见。
审计速度有多快?
几周的工作量缩短到几分钟完成
有了大数据分析技术支持,一些大型专项审计能够在短期内完成。
全省农村信用社数量多、分布广、业务量大,有着庞大的数据量。过去,由于缺乏计算机及金融专业人才,加上各市州审计机关各自为政,存在许多重复劳动和结果不显著的问题。正在进行的针对全省农村信用社112家法人机构的审计改变了这一尴尬状况。
审计部门依托创新开发的金融审计数据分析平台,实施“总体分析、发现疑点、分散核实、系统研究”新型审计模式,提升了审计项目实施的实时互动、科学管理以及数据利用。“通过编制审计模型,数据分析小组可在那些令人眼花缭乱的数据、票证中,循着蛛丝马迹,快速找到同一违法行为的共同标志,让异常数据浮出水面。”数据分析组组长介绍说,以贷款为例,数据分析人员可通过数据联网分析贷款户的资金流向是否符合国家政策和申贷要求,跟踪资金用途,就能查出有没有被挪用,是否存在非法侵占、挥霍贷款等情况。
这项审计涉及贷款总量超过1000亿元,审计厅在短短一周内便实现了对全省信用社信贷发放结构等业务数据的分析和核实。按照传统审计办法,审计骨干人员可能要几周才能完成的工作量,如今几分钟就能完成。
数据挖掘有多深?
一家公司异常带出一个行业整治
大数据审计依托信息数据进行系统分析,实现了精准核查、整体评价。
去年上半年进行的预算执行审计中,审计人员利用不同行业数据之间存在的关联关系进行比对,发现省级劳务公司开票金额与营业税计税基数之间出现巨大异常。随后顺藤摸瓜,又发现有数十户劳务派遣公司开具发票18万张、涉及金额144亿元,而计税基数仅为发票额的1%-2%。针对审计发现的问题,省地税局、公安厅、审计厅等部门专题研究部署,迅速启动了对全省劳务公司开具发票的专项整治工作。
对于这次审计,电子数据审计处处长余川感触最深:“大数据分析立足于与审计对象具有关联关系的所有数据,为审计提供了一种站高望远、从整体把握对象的技术手段。”
有了大数据分析的支持,审计人员犹如多了一双透视眼,可以快速锁定疑点,并追询疑点、定向排查、查实查透。
4月刚结束的全省保障性安居工程跟踪审计中,审计组通过比对部分市、县10余万条人员信息数据与房管部门商品房信息,发现了上千名购有商品房、超过规定标准的人员违规享受保障性住房;通过将享受保障性住房待遇人员信息与同期养老保险缴费基数、公积金缴费基数、个人所得税应税数及机动车辆登记信息等进行比对,骗取或违规享受保障性住房、骗取或违规领取货币补贴等问题浮出水面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04