京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SPSS做数据分析?先弄懂SPSS的基础知识吧
1、SPSS数据分析的流程

2、SPSS特性:

3、数据的编辑
常量
变量
变量的测试方式
操作符与表达式
常用的数据操作命令
Data->Sort Cases
Transform->Rank Cases
Transform->Count
Transform->Recode
Transform->Automatic Recode
Transform->Compute
Data->Transpose
Data->Split Files
Data->Merge Files
Compute
Rocode
Split file
analyze all case分析所有的样本,不产生分组;
compare groups产生对比分析组;
output by groups分组输入分析结果;
Merge File
数据的分类汇总
检查重复的数据
数据的加权
选取一定的case进行分析
常用的数学函
取绝对值:abs(数字型表达式)
求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
四舍五入函数:rnd(数字型表达式)
开方函数:sqrt(数字型表达式)
4、基本的统计分析
SPSS统计分析概述:
Descriptive Statistics
– Frequencies:频数分析
– Descriptives:描述统计
– Explore:探索分析
– Crosstabs:列联表分析
– Ratio:比率分析
Descriptives
– 可以对变量进行标准化;
Explore
– Explore是对连续性变量进行探索性分析最有效的工具;
– 考察数据的奇异性和分布特征;
– 箱盒图、茎叶图、正态检验图及方差齐次性检验;
Crosstabs
– 数据类型要求为分类变量;
– 二维或多维交叉频数表(列联表),分析事物(变量)之间的相互影响和关系;
– 可以做卡方检验,来分析行列变量之间是否存在相关性;
分类变量统计描述常用指标
– 统计量:
• 频数、频率、累计频数、累计频率、众数
• 比:任意两个变量之比
性别比,货物/销售人员比
构成比:部分占总体的比例
• 率:事件的发生强度
– 图形:
• 条图、饼图
Spss操作
– 单个变量的分析
• Analyze…Descriptive Statistics…Frequcencies
– 多个变量的分析
• Analyze…Descriptive Statistics…Crosstabs
– 条图
• Graph…(interactive…)bar
– 饼图
• Graph…(interactive…)pie
连续变量的描述指标
– 频数表Frequency
• 直观的方法:分布类型分布特征
– 集中趋势Central tendency
• 均数mean 中位数median 众数mode
– 离散趋势Dispersion tendency
• 全距Range
• 方差Variance 标准差std.deviation
如何计算各个描述统计量
– Analyze->Descriptive Statistics->Frequcencies…
– Analyze->Descriptive Statistics->Descriptives…
– Analyze->compare means->means…
• 如何用图形描述连续变量
– Graph…Interactive…Histogram
• 如何应用Explore对连续变量进行探索性分析
– Analyze->Descriptive Statistics->Explore…
Basic Tables过程:对分类/定量资料进行各种复杂格式的描述;
• General Tables过程:在同一张表格内同时对分类资料、连续资料和多选题数据进行汇总功能非常强大,但使用上相对复杂;
• Custom Tables过程:含有表格预览窗口,并可在制表过程中控制结果;
• Multiple Response Sets/Tables过程:专门为多选题数据设计的制表过程;
• Tables of Frequencies过程:在同一张表格中对多个分类变量同时输出频数表;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29