京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的企业信息化-基础应用_数据分析师
在各种媒体的连篇累牍的报到和宣传下,我们的大多数企业对“大数据”一词想必都不陌生。无论是对于走在社会发展前沿的互联网、IT产业,亦或是传统的医药、交通行业,大数据必将带来难以估量的价值。在企业信息化过程中,若掌握对大数据的处理能力,可在今后的信息化发展应用上取得领先地位。面对如今的大数据时代,正在进行信息化改革的工业企业要把握好大数据带来的机遇,紧跟信息时代的潮流。企业信息化过程中的数据安全管理
大数据环境下,信息系统之间是互连的,他们之间会形成一个息息相关的生态圈。大数据的环境会带来一定的风险,比如:企业自身的商业机密在数据共享时会被泄露;很多敏感数据的所有权和使用权没有被明确界定;数据量的存储和安防措施不够有力等。数据具有共享性,我们在保证数据在大环境下共享的同时,还要注意数据的安全性。我们的信息安全管理工作内容之一就是保证数据在传递过程中不会被篡改和泄露。企业在进行信息化建设时,要加强对数据安全问题的控制和管理,以解决大数据时代带来的新的数据安全性问题,所以大数据时代信息安全管理任重而道远。
企业信息化建设中的大数据基础平台建设
大数据时代的发展需要完善的信息基础平台,而现有的供电局信息基础架构还不足以满足大数据时代的发展需求。我们在进行信息基础平台的建设和完善时,不仅要增加信息系统的计算能力和数据消化能力,还要重视对数据资源的扩展和融合。业界普遍认为,现今的云计算技术能够搭建一个信息基础设施平台,满足各类工业企业对数据服务的需要。所以,我们的供电局如果要搭建和完善信息基础平台,应该利用好云计算技术,把自身对大数据的存储和处理能力进一步提高。
企业信息应用系统逐渐迈入整合化、智能化时代
大数据技术最吸引工业企业的地方不在于它的“大”,而在于数据的“用”--整合、分析、利用等。我们的企业在信息化建设过程中总是会产生大量的数据,这是一种不可避免的现象。而此时,如何将那些海量的数据加以整合和利用是目前企业进一步加强信息化建设遭遇的必须要解决的拦路虎。大数据信息应用系统对如何利用好数据具有不可估量的价值,而在大数据应用系统发挥作用前,企业急需对系统模型和数据规范进行统一和整合。我们的企业在大数据时代的发展和推动下,将信息应用系统推动到智能化的阶段。
为工业企业信息化提供环境保障
建立起企业现代化建设的激励机制,切实提高企业的信息化水平。进一步加大企业的信息化水平、不断推动企业管理模式的创新,加强技术合作领域的创新型发展,引进国外先进的经验和创新发展的实例来促进企业信息化,不断推动企业整体水平的提高,改造落后的生产管理模式来加强企业的发展进步,使得信息技术能够真正为工业企业的发展提供力量,为企业信息化创造条件。在大数据时代,工业企业也要充分利用各种形式、各种媒体来加大企业的信息宣传力度,增强企业的最新信息技术的更新普及,使得企业形成良好的信息化氛围。另外,企业也可以利用好大数据时代的信息化来建立起网络化的服务平台,使得工业企业的形象以及服务能力得到进一步提升。
企业在大数据时代下面对的机遇和挑战
信息化建设中的缺陷
首先,我们的大多数企业在信息化建设中,都仅仅是对信息技术的简单应用,而没有意识到数据将带给我们的巨大价值。其次,很多大型的国有企业因为受到政策的保护而导致自身危机意识薄弱,在信息化建设中会慢半拍,落后于其他外资或合资企业。还有,许多企业在信息化建设中对大数据技术的重要性认识不够,在企业管理上缺乏对大数据的应用,导致企业管理高成本、低效率的局面。
把握住大数据时代带来的机遇
大数据时代的到来,会给企业带来革命性的影响。企业通过对大数据的分析和挖掘,可以优化自己的信息管理流程,逐渐变成精细化、数据驱动型的管理。企业传统的管理和运营模式会被改变,大数据将成为企业的决策中心,并提高企业对市场的反应能力和降低企业管理成本。不同行业、不同规模的企业在大数据发展中受到的影响程度也不同,总的来说,就是大数据技术应用越深,企业吸收的价值也越大。目前来看,企业主要需要做的就是利用大数据技术不断提升自己的信息化水平,并积极挖掘大数据的应用。
应对大数据的挑战措施
大数据时代的到来,为我们的企业带来机遇的同时,也带来了一些挑战。面对这些挑战我们的企业可以做出以下措施来应对:一是加强领域的合作,各相关技术领域的专家要加强合作与共赢;二是开发高效的数据密集型计算方法,科学家们需要加大研发力度;三是在信息化应用过程中不断进行调整,遇到具体问题要具体分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29