京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的企业信息化-基础应用_数据分析师
在各种媒体的连篇累牍的报到和宣传下,我们的大多数企业对“大数据”一词想必都不陌生。无论是对于走在社会发展前沿的互联网、IT产业,亦或是传统的医药、交通行业,大数据必将带来难以估量的价值。在企业信息化过程中,若掌握对大数据的处理能力,可在今后的信息化发展应用上取得领先地位。面对如今的大数据时代,正在进行信息化改革的工业企业要把握好大数据带来的机遇,紧跟信息时代的潮流。企业信息化过程中的数据安全管理
大数据环境下,信息系统之间是互连的,他们之间会形成一个息息相关的生态圈。大数据的环境会带来一定的风险,比如:企业自身的商业机密在数据共享时会被泄露;很多敏感数据的所有权和使用权没有被明确界定;数据量的存储和安防措施不够有力等。数据具有共享性,我们在保证数据在大环境下共享的同时,还要注意数据的安全性。我们的信息安全管理工作内容之一就是保证数据在传递过程中不会被篡改和泄露。企业在进行信息化建设时,要加强对数据安全问题的控制和管理,以解决大数据时代带来的新的数据安全性问题,所以大数据时代信息安全管理任重而道远。
企业信息化建设中的大数据基础平台建设
大数据时代的发展需要完善的信息基础平台,而现有的供电局信息基础架构还不足以满足大数据时代的发展需求。我们在进行信息基础平台的建设和完善时,不仅要增加信息系统的计算能力和数据消化能力,还要重视对数据资源的扩展和融合。业界普遍认为,现今的云计算技术能够搭建一个信息基础设施平台,满足各类工业企业对数据服务的需要。所以,我们的供电局如果要搭建和完善信息基础平台,应该利用好云计算技术,把自身对大数据的存储和处理能力进一步提高。
企业信息应用系统逐渐迈入整合化、智能化时代
大数据技术最吸引工业企业的地方不在于它的“大”,而在于数据的“用”--整合、分析、利用等。我们的企业在信息化建设过程中总是会产生大量的数据,这是一种不可避免的现象。而此时,如何将那些海量的数据加以整合和利用是目前企业进一步加强信息化建设遭遇的必须要解决的拦路虎。大数据信息应用系统对如何利用好数据具有不可估量的价值,而在大数据应用系统发挥作用前,企业急需对系统模型和数据规范进行统一和整合。我们的企业在大数据时代的发展和推动下,将信息应用系统推动到智能化的阶段。
为工业企业信息化提供环境保障
建立起企业现代化建设的激励机制,切实提高企业的信息化水平。进一步加大企业的信息化水平、不断推动企业管理模式的创新,加强技术合作领域的创新型发展,引进国外先进的经验和创新发展的实例来促进企业信息化,不断推动企业整体水平的提高,改造落后的生产管理模式来加强企业的发展进步,使得信息技术能够真正为工业企业的发展提供力量,为企业信息化创造条件。在大数据时代,工业企业也要充分利用各种形式、各种媒体来加大企业的信息宣传力度,增强企业的最新信息技术的更新普及,使得企业形成良好的信息化氛围。另外,企业也可以利用好大数据时代的信息化来建立起网络化的服务平台,使得工业企业的形象以及服务能力得到进一步提升。
企业在大数据时代下面对的机遇和挑战
信息化建设中的缺陷
首先,我们的大多数企业在信息化建设中,都仅仅是对信息技术的简单应用,而没有意识到数据将带给我们的巨大价值。其次,很多大型的国有企业因为受到政策的保护而导致自身危机意识薄弱,在信息化建设中会慢半拍,落后于其他外资或合资企业。还有,许多企业在信息化建设中对大数据技术的重要性认识不够,在企业管理上缺乏对大数据的应用,导致企业管理高成本、低效率的局面。
把握住大数据时代带来的机遇
大数据时代的到来,会给企业带来革命性的影响。企业通过对大数据的分析和挖掘,可以优化自己的信息管理流程,逐渐变成精细化、数据驱动型的管理。企业传统的管理和运营模式会被改变,大数据将成为企业的决策中心,并提高企业对市场的反应能力和降低企业管理成本。不同行业、不同规模的企业在大数据发展中受到的影响程度也不同,总的来说,就是大数据技术应用越深,企业吸收的价值也越大。目前来看,企业主要需要做的就是利用大数据技术不断提升自己的信息化水平,并积极挖掘大数据的应用。
应对大数据的挑战措施
大数据时代的到来,为我们的企业带来机遇的同时,也带来了一些挑战。面对这些挑战我们的企业可以做出以下措施来应对:一是加强领域的合作,各相关技术领域的专家要加强合作与共赢;二是开发高效的数据密集型计算方法,科学家们需要加大研发力度;三是在信息化应用过程中不断进行调整,遇到具体问题要具体分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12