
移动互联网和大数据将带来“新财富鸿沟”
在人类历史上,每一次重大的技术革 命或商业模式革 命,都推动了人类社会前行。但与此同时,也带来人类不同族群之间的力量失衡和财富失衡,总有一部分族群加快了发展速度,掌控了更多的财富,也有一部分族群被甩在后面。
最佳管理智囊档案
在18世纪下半叶,随着蒸汽机的发明,欧洲开始进入了工业文明时代,而此时亚洲等许多地区还处在农耕文明时代,两者之间的财富鸿沟日渐明显。从此时开始,全球的财富中心开始向西方转移。
在20世纪初,随着股票交易制度及相关制度的完善,纽约开始成为全球第一大金融中心,纽约证券交易所、华尔街、摩根已经开始成为当代金融业的标志。在这一轮的金融业革 命之后,也同样拉开了美国和欧洲的财富鸿沟。自纽约成为世界金融体系的太阳之后,包括伦敦在内的世界其他金融市场,从此成为围绕着这个太阳旋转的行星。
在20世纪下半叶,随着在电子、通讯、半导体、软件等方面的大量创新涌现,硅谷开始成为全球信息产业的圣地,成为全球信息产业当之无愧的领导者。在这一轮信息技术革 命之后,美国与亚洲等其它地区的财富鸿沟进一步拉大,随着美国技术源源不断的出口全球,财富和权力进一步集中到西方。
移动互联网和大数据时代的到来,事实上也是一场技术革 命与商业模式革 命,与前面的历史类似,这场革 命同样会拉大不同族群之间的财富鸿沟。
首先,在不同国家之间,在全球移动互联网和大数据体系中所处位置是不同的,比拼的是谁更接近生态体系的基石位置,从而能真正把握住未来发展的命脉,包括手机操作系统、大数据底层平台、开源软硬件平台、大规模社交平台、电子商务交易平台等。现在看来,这些主流平台极有可能集中于少数几个国家之间。互联网是没有国界的,但互联网企业是有国界的,这样集中于少数国家的技术、平台与数据,将拉大不同国家之间的财富鸿沟,甚至形成数字化的垄断霸权。
其次,以中国为例,中心城市与中小城镇的数字化差距也将日渐明显。从城市竞争的角度看,中心城市将占据核心数据资源与核心平台资源,对于商机、人才、知识具有垄断性控制力,是中小城镇无法比拟的。中心城市对于未来移动互联网和大数据的运用将愈发娴熟,使其不断提升城市竞争力。而中小城镇将长期徘徊在这一轮新技术革 命的边缘处。这样使得财富鸿沟进一步拉大,大型城市就像一个黑洞一样,源源不断地把发展中的财富吸附进来。
第三,在不同行业之间,可以发现,如果说以往,行业界限泾渭分明,各有各的财富空间。但现在则不同,以阿里巴巴、腾讯等企业为代表的互联网业,正像“站在门口的野蛮人”一样,冲进了传统行业的领地,可以看到,传媒、出版、零售、教育、交通、旅游、影音、IT等诸多行业都面临价值被互联网掠夺的风险。其中的要点在于互联网公司掌握了用户资源和行为数据,纷纷搭建了自己的云计算平台和大数据平台,比传统行业更懂它们的用户,定价更低,服务更好,这将自然造成不同行业之间的财富鸿沟。
第四,在不同受教育人群之间,是否善于运用移动互联网或大数据的优势,这一点将构成不同人群职业发展的显著差异。移动互联网和大数据既是新技术、新应用,同时也是新思维、新观念,移动互联网所蕴含的“在线”、“连接”的观念极大改善了人与社会资源的配置,大数据所蕴含的“相关性”“规律性”的观念将增强人的洞察力。因此,未来人的职场竞争,无论从事什么行业,在很大程度上比拼的是是否形成了新观念,善用新工具。不同的理念和不同的学习能力,将拉大不同人群之间的财富鸿沟。
移动互联网和大数据在推动社会发展的同时,也极有可能带来新的新财富鸿沟。效率并不必然带来公平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14