京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动下的数字化营销_数据分析师培训
大互联时代,企业对数据的需求呈现出前所未有的需要,基于大数据的分析已经成为很多优秀企业的常态,甚至说企业有没有大数据和消费者洞察部门是区分未来是否会成为一家优秀的公司的重要分水岭。可以说在这个产品差异化已经不再是一个可持续竞争优势的世界,了解消费者是最重要的事情。一名天才创意的头脑根据对消费者的直觉设计广告促销已经是企业界早已逝去的回忆。今天的营销需要基于数据洞察每个消费者偏好并制定差异化定位。大数据现在已经成为市场营销和销售的前沿地带。
传统营销vs数字营销
这些年,传统营销在各个领域中的效率大幅下降。最重要的原因是:消费者细分群体、产品、品牌、媒体和销售渠道的成倍增加以及全球化世界中国竞争的加强。因此营销和销售团队需要把小店主的做法扩大化,即要向小店主那样了解个体消费者。
这就是说,中国的营销人员也需要付出巨大的努力打造品牌,一些家喻户晓的全国品牌,如蒙牛(乳业)、平安(金融服务)或美的(白色家电)已经价值数十亿美元。然而品牌忠诚度在中国很低,大众消费者很容易因为一点价格差距而转移。那么对于大多数中国公司来说,基本的企业商业活动,例如生产、成本控制、销售及分销仍然是首要事项也就不足为奇了。
在这种环境下,中国的营销仍然是一个相对传统的业务:基本是产品驱动,大多数来自经验,主要是针对已有产品的销售效果,而不是激发新产品或商业模式设计灵感。与西方同行相比,除了在一些大型国有企业和技术驱动行业,中国的营销人员整体上处于消费者数据收集和分析的起步阶段。
与此同时,快速变化的消费需求、偏好和收入水平给数据驱动方法带来了特殊的挑战。对有限制的历史数据集进行解释并非普遍可行,尤其是在消费行为变化如此之快的时候。
近几年随着大数据基础设施和技术的成熟,中国公司在数据驱动营销领域也在快速跟进。在过去的10年中,中国大多数公司已经建立了一定的IT资源,并已建设了它们的基本数据设施。中国拥有世界上最大的互联网和智能手机应用社区,产生了巨大的并且还在不断增长的数据,这些数据正在等待被处理、分析和应用。随着中国公司和消费者的成熟,这种数据驱动的营销和销售方法将变得越来越意义重大。公司未来的成功将取决于中国消费者能被怎样了解、定位和说服。领先公司已经开始思考如何准备向这个数据时代过渡,即如何从以技术为主导的方法转为客户导向战略,使用数据带来业务增长。
成功的过渡需要深刻变革,至少在企业文化和组织方面。这正是第三方合作伙伴可以扮演重要角色的地方,它们可以帮助中国公司利用全球数据驱动营销和销售的经验,包括设计整体数据战略、IT能力建设和建立合适的组织及流程。但是在深入变化之前,对商业数据的机遇和影响有一个明确的把握至关重要。如何将数据转换为信息,信息转换为知识,知识还要能够传播出去成为集体的智慧,成为一种管理模式和企业的核心竞争力。
在当今世界,随着各类智能信息终端的普及,线上和线下的界限越来越模糊,我们每时每刻都在生产数据,并用于消费者细分、用户行为分析、客户流失分析等,尤其是实时分析愈加重要。市场由消费者个体所组成,大数据为市场营销和销售部门提供了历史性的机遇。通过对客户行为数据的分析,它们可以更好地理解客户价值,预测客户行为。
消费者行为动机及客户价值
通过智能化分析将能较好地了解潜在消费者的行为动机。比如从人口统计学、社会经济、心理和价值观,以及需求(被分为“客观需求”和“主观欲望”两部分)数据中得到结果。
现在,新技术可以帮助我们识别所有的重要行为组成部分,如互联网搜索行为、零售中的客户钱包份额(share of wallet)、在社会媒体平台上发布信息等。另一方面,为了影响客户的未来行为,我们必须尝试了解潜在行为(客户可能找到的信息、进行的购买和投诉)。此外,我们需要洞察可见(例如,开支金额、与我们商店的实际距离等)和不可见(例如,可支配收入、价值观、需求、偏好等)两方面的行为动机等,这些是基于市场研究数据的高级细分领域。
人们认识到确定客户价值有多种方法,每种方法都有优点和缺点,这取决于用于何种市场。在数据驱动的营销背景下,当检视整个客户生命周期时,客户价值成为更重要的资产。在所谓的客户生命周期价值被提出前,市场营销集中在两个核心问题上:第一,怎样吸引新客户?第二,怎样阻止客户流失?客户生命周期价值这个营销指标为营销人员带来的任务是找出哪些措施放在一起时能使公司得到更多的利润。
许多项目的经验表明,我们只能从传统客户价值杠杆的“工具箱”中寻找合适的框架。以下五个步骤就能带来成功。
(1)在单个客户层级找准市场(以及潜在市场)。
(2)增加单个客户的钱包份额:
(3)留住客户,从而增加客户关系的长度。
(4)促进客户的推荐(例如,通过口碑营销)。
(5)降低营销成本或提高营销投资回报率。
数字营销迎来历史性机遇
市场是个体顾客行为的综合。大数据分析提供给营销和销售团队历史性的机遇。如果我们有技巧地把数据整合起来,就能得到高清质量、可以放大的市场图景。
如果我们更好地了解每个单独客户,整个市场对我们来说也是敞开的。而且我们掌握越多关于市场上正在发生事情的定量信息,就能更好地回答谁何时买了什么这个问题。基于数据的营销是一套解释性的体系。可以通过对个体的研究提示整体。反过来,个体消费者在整体的背景中也可以更好地被理解。
数据营销不需要从根本上创造或定义新的参数和指标,对客户价值和行为动机的传统理解在应用于数据营销时也完全够用。这意味着市场营销人员和销售部门将来不用做完全不同的事情,只要做得更好。
包括已知行为动机和必要的实际客户行为数据的细粒化市场镶嵌画提供给我们更广泛且有数据支持的客户价值理解。镶嵌画使得一家公司能实现恰当的、有针对性的向上和交叉销售,促成替代效应,也能从中得到对自己产品创新的重要见解。
基于数据营销最迷人的地方在于,得益于丰富的数据,我们更迅速而准确地知道特定营销手段将会增加多少营业额。
未来的企业赢家
一、未来的市场赢家一定是那些分析和基于数据营销可以创建清晰可辨的客户利益的公司
二、数据丰富的公司会真正成为以客户为中心服务的企业
三、在无差异化市场,利用顾客数据可以实现新的盈利增长
四、未来基于大数据市场竞争将不是以市场为单位而是以时间为单位的竞争,每个企业都应该建立自己的大数据情报指挥中心和数字化营销总部。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06