京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来几年,随着互联网、社交网络以及移动技术的深入发展,大数据将继续高速增长并进入深耕与落地时期。在后大数据时代,如何利用数据分析技术快速获取真正的业务洞察力将成为企业制胜的关键。作为大数据的一个非常重要的组成部分,“客户心声大数据”与客户需求相关,有效分析“客户心声大数据”将能帮助企业洞察客户的真实需求,进而采取正确行动优化业务流程,提高客户满意度,提升业务能力。
“客户心声大数据”并非仅来自于社交媒体。事实上,对于大多数企业而言,大部分客户心声隐藏于客户来电、电子邮件、网络以及调查之中。“客户心声大数据”因此也同样具有海量、渠道多样化等特点。此外,调查发现“客户心声大数据”中有超过90%都是非结构化的,包括客户语音、文本、网页、图像、视频以及多媒体等不能用数字和符号标记的各种形式的信息。如何从这些繁杂、错综、无序的非结构化数据中挖掘客户心声已成为众多企业进行客户心声分析的最大挑战。凯捷管理顾问公司(Capgemini)在研究性著作《决定性因素:大数据与决策》(TheDecidingFactor:BigData&DecisionMaking)1显示,40%的企业高层受访者都表示难以利用和解析非结构化数据。
将非结构化数据转化为结构化数据
将非结构化数据转化为结构化数据需要使用高级数据分析工具。Verint的客户心声分析解决方案可以通过业务分类、业务梳理的方式将海量语音、文本数据进行结构化处理,通过找到客户的焦点、客户的共性发现问题以及客户投诉的原因及焦点。Verint的客户心声分析解决方案,主要有三个组成部分。
第一个最主要的组成部分是语音分析引擎。语音分析引擎不同于一般的语音识别,它建立在海量的录音识别的基础之上,通过寻找业务之间的共性找到在企业与客户交互过程中客户最关注或者最核心的问题,进而帮助企业针对这些问题去做进一步的分析处理,洞察客户的真实诉求。
其次是文本分析引擎。文本分析引擎可以自动识别电子商务、Email、微博、微信等各种客户接触点上所产生的自然语言,深入挖掘和分析文本信息中蕴含的客户情绪,并通过报表的形式将客户情绪的分析结果呈现给企业决策者。最后是客户反馈分析,通过企业级客户反馈分析可以将来自不同渠道的零散、杂乱的客户反馈信息整合在一个统一的报表里供企业使用。
读懂大数据时代下的“客户心声”
慧锐系统公司客户心声分析部副总裁DanielZiv
建立协同统一的“客户心声大数据”分析平台
海量、多样化的“客户心声大数据”导致企业难以对来自不同渠道、杂乱无章的客户反馈信息进行统一分析。另一方面,由于企业各部门所接触的客户信息获取渠道不尽相同,所使用的挖掘客户信息应用工具也多种多样,因此导致企业各部门获得的客户心声也大相径庭,企业难以区分工作重点进而采取相应的行动,进而导致企业受到“无关联倾听”的困扰。凯捷管理顾问公司报告显示表明56%的调查受访者认为“组织孤岛”是利用大数据进行有效决策的最大障碍。
因此,建立协同统一的“客户心声大数据”分析平台有助于企业全面洞察客户的真实“心声”和诉求,真正为企业决策提供有用信息。在技术层面,企业可以应用能提供统一分析功能的解决方案。Verint的运营管理优化套件可以将来自不同渠道的数据协同处理,构建成一个统一的分析平台,将所有分析结果呈现在统一界面上。企业可以在这个统一的界面上看到来自于语音分析客户投诉抱怨的焦点在哪里,来自于文本分析当前媒体的热点在哪里,提到最多的关注点在哪里,以及客户的喜好心声。同时,企业还需优化组织结构来解决各部门在客户心声数据分析上各自为政的问题。
目前,虽然距离大数据真正落地还有一段距离,但是语音分析、文本分析等“客户心声”分析技术在国内已经不是比较新的技术,在电信、金融、保险等各行业的企业都有成功实践。在大数据时代,对企业而言,从海量非结构化数据中获取全面、真实的“客户心声”洞察力是挑战但更是机遇。借助有效的客户心声分析技术将有助于企业提高绩效,提升竞争力并实现企业智能化管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30