京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据并购下的融资需求_数据分析师
对于一个敏锐的投资人来说,大数据是近两年来不容错过的热点。但是对于信托公司来说,大数据行业里的公司普遍存在规模较小,盈利模式不明确等特点,比较难以入手。
不过,随着行业上升发展,机会正在慢慢出现——大型互联网企业已经形成了多种相对成熟的大数据应用模式,并加速向传统领域拓展;加之IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。在这一过程中,对资金的需求就大大增加。这对信托来说,是个机会。
行业概况
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。处理流程主要有数据采集、数据导入/预处理、统计分析和数据挖掘四步骤。从2014年起,中国大数据市场开始进入高速发展期,市场规模预计突破75.7亿元,实现28.4%的增速。
(一)产业链包含产品、服务和数据提供商
1.解决方案提供商主要由传统IT厂商转型而来
这类厂商主要包括传统 IT 厂商和新兴的大数据创业公司,通过一系列收购来提升大数据解决方案服务能力。但总体上,国内大数据解决方案提供商实力较弱,产品一些关键行业还未形成影响力。
2.处理服务提供商的主体是云服务商
处理服务提供商主要为企业和个人用户提供大数据分析和价值挖掘服务。按照提供的服务是在线、离线和是否提供分析的基础数据两个维度,服务模式可划分为四类:第一类是在线纯分析服务提供商。如阿里云的开放数据处理服务(ODPS)、百度的大数据引擎、腾讯的数据云等;第二类是既提供数据又提供在线分析的提供商。例如Twitter 基于实时搜索数据的产品满意度分析,百度推出的大数据营销服务“司南”;第三类是单纯提供离线分析服务的提供商;第四类是既提供数据又提供离线分析服务的提供商。
3.大数据资源提供商
包括数据拥有者和数据流通平台两个主要类型。例如美国电信运营商 Verizon 推出的大数据应用精准营销洞察,将向第三方企业和机构出售其匿名化和整合处理后的用户数据。国内阿里巴巴公司推出的淘宝量子恒道、数据魔方和阿里数据超市等,属于此种类型。
(二)上市公司有20多家
主要是解决方案提供商和处理服务提供商,这类公司市盈率基本都在100以上。而纯粹的数据资源提供商不多,很多提供数据资源的企业是依托在某一传统领域的经营而积累了数据,但大数据并非其主营业务,例如环境监测行业龙头雪迪龙开拓环保大数据互联网服务模式。我们不把这类公司归为数据资源提供商。
行业趋势
(一)地方政府对大数据发展的三种推动模式
各有侧重:模式一是强调研发及公共领域应用。如上海市《推进大数据研究与发展三年行动计划》提出,将在三年内选取医疗卫生、食品安全、终身教育、智慧交通、公共安全、科技服务 6 个有基础的领域,建设大数据公共服务平台。模式二是强调以大数据引领产业转型升级。如北京中关村《关于加快培育大数据产业集群推动产业转型升级的意见》提出,要充分发挥大数据在工业化与信息化深度融合中的关键作用,推动中关村国家自主创新示范区产业转型升级。三是强调建立大数据基地,吸纳企业落户。
(二)互联网为领导者,加速向传统领域拓展
大数据广泛应用于各行业,互联网是大数据应用的发源地,大型互联网企业是当前大数据应用的领跑者,形成了多种相对成熟的大数据应用模式。此外,大数据应用加速向传统领域拓展,目前,传统行业中,金融、零售、电信、公共管理、医疗卫生等领域已经在积极探索和布局大数据应用。主要呈现两种发展方向:一是整合行业或自身内部的数据进行挖掘分析,二是借助外部数据(主要是互联网数据)实现相关应用。例如,金融机构通过收集互联网用户的社交数据、历史交易数据来评估用户的信用等级。目前数据变现最为确定的两个途径:一是征信、二是数据精准营销,此外,建设智慧城市,尤指在政府和公共服务领域的应用也是大数据的主要作用之一。
(三)IT厂商外延式扩张带来并购业务机会
2011年,麦肯锡、世界经济论坛等知名机构对大数据这种数据驱动的创新进行了研究总结,才在全世界掀起了一股大数据热潮,到今天大数据产业和的应用发展不过几年的时间。IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。
总结目前IT公司的并购特点,一方面通过收购垂直行业企业以完善公司产业链布局,加强技术层面的实力,另一方面通过水平式扩张,不断寻找新兴行业优势企业,打开大数据应用的领域。可见在计算机软硬件领域和金融、医药、车联网、智慧城市、云计算等应用领域将存在大量并购业务机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24