京公网安备 11010802034615号
经营许可证编号:京B2-20210330
客户数据分析:知道的太多也不是好事_数据分析师培训
数据被称为21世纪的石油,其中客户数据又是数据中最为重要的。大数据中与客户数据有关的,包括社交媒体数据、电子邮件、调查、客户服务数据等,很多组织都拥有很多数据。但是,很多数据还处在原油阶段,没能得到处理、提取、和加工,客户数据还不能产生业务价值。只有组织采取行动,深挖数据,客户数据才能有所贡献,而不止是一堆0、1和文本。
因此,产生了客户数据分析。不断地,组织投资在数据分析领域,希望能够从数据中挖掘价值,从而更好地开拓客户、维护客户。
例如,网购网站eBay就分析来自客户数据库和网站活动数据的销售记录,以此支持市场战略,将主页进行个性化调整,让不同的用户浏览到不同的内容。在2014大数据创新大会上,eBay前总裁Vadim Kutsyy表示,分析项目能够帮助网站提高业务水平。
另外,eBay通过数据分析,尽量避免给客户显示过多广告和客户不感兴趣的产品。eBay尽量为用户提供积极的网站体验,这也是Kutsyy的首要分析任务。他表示:“我总在问自己,我们的客户是否从我们收集的数据中获得了价值?”
Kutsyy介绍了一系列eBay正在使用的数据管理平台和项目语言,比如Hadoop、Teradata数据仓库和MySQL、Cassandra数据库。但是他认为,要获得正确的客户分析,就不能依赖技术。组织采用的任何工具都是为客户服务的。客户关心的不是你用了Hadoop还是Teradata,或者你用的Java语言还是Python语言,客户关心的是自己的体验。
客户分析
Netflix也采用了客户数据分析,用来个性化在线流媒体服务,保证客户能够满足于服务,按月支付月费。Netflix负责流科学算法的总监Nirmal Govind表示,收集和分析用户行为数据包括他们看的电影、观看时间、和持有的互联网账号。他说:“我们有很多数据,显示客户的消费内容,他们喜欢什么。所有这些数据都可以用于优化客户体验。”和eBay一样,Netflix使用了很多技术来支撑数据分析项目,其中包括Teradata、Cassandra和开源Apache Hive数据仓库软件、Tableau的数据可视化工具。收集和准备数据之后,Govind的团队采用了一系列的算法,比如根据用户看什么样的电影推荐什么样的内容。2011年,Netflix开始开发它的原生内容。Los Gatos公司也挖掘客户喜欢和不喜欢的数据,支撑内容推荐。
数据分析之路也有挑战。Govind表示找到正确的推荐引擎是很困难的。推荐是基于基本参数进行的,很难准确地判断出一个人想要看什么内容。为了调试好引擎,他的团队做了很多A/B测试,基于不同的预测模型给不同的用户进行推荐,然后追踪每组用户花在推荐内容上的时间。
工资和人力资源服务数据分析公司Paychex关注了其他方面的数据分析:使用搅动模型识别可能会采用他们服务的客户。在去年的预测分析大会上,Paychex风险分析经理Philip O’Brien表示,他和他的团队利用公司规模数据、交易历史、客户服务交互等数据构建模型,找到可能会购买公司产品的客户。分析团队发现,公司21%的客户服务费用都花费在无论如何都是使用Paychex产品的客户上了。O’Brien表示,公司根据搅动模型部署了之前描述的处理客户数据的方法。但说服业务经理使用分析结果又成了一大挑战。
在过去,公司有很多“屁股决定脚”的决策方式,他表示:“如果人们习惯了靠直觉办事,你一定要向他们展示分析工具具体能带来什么价值。”
客户数据陷阱:知道的太多
这里有一个潜在的危机,即知道的太多。知道什么时候停止是分析客户数据的重要一步。公司可能掌握了很多数据,但不正确地使用数据很可能会给客户带来不适,最终致使他们离开。
SearsHoldings公司的大数据高级经理、企业数据仓库管理员、负责运营和部署的Andy McNalis表示,零售商分析客户浏览历史、购买记录和地理位置数据来帮助自己设定和修改产品价格。但也有一些数据动不得。比如Sears的门店都有Wi Fi覆盖,它可以看到客户在使用Wi Fi查看竞争对手网站的价格。这时,公司可以给客户推送优惠券,但这样做会让客户觉得Sears在监视他,反而适得其反。
客户数据分析还包括其他方面,不只是部署系统和捕捉数据那么简单。Sears使用Hadoop集群和Teradata数据仓库支持客户分析项目,分析团队用开源R语言等编程语言写计算方法,再将其运行到基于Hadoop的数据分析和虚拟化工具上。
这时就需要技术熟练的人应用算法生成有用的信息,访问和分析发现的内容。McNalis表示:“人们认为你在这边把数据填进去,那边就会出来一枚硬币,但其实不是这样的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27