京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网络营销大数据实操七步走_数据分析师
对很多企业来说,大数据的概念已不陌生,但如何在营销中应用大数据仍是说易行难。其实,作为大数据最先落地也最先体现出价值的应用领域,网络营销的数据化之路已有成熟的经验及操作模式。
一、获取全网用户数据
首先需要明确的是,仅有企业数据,即使规模再大,也只是孤岛数据。在收集、打通企业内部的用户数据时,还要与互联网数据统合,才能准确掌握用户在站内站外的全方位的行为,使数据在营销中体现应有的价值。在数据采集阶段,建议在搜集自身各方面数据形成DMP数据平台后,还要与第三方公用DMP数据对接,获取更多的目标人群数据,形成基于全网的数据管理系统。
二、让数据看得懂
采集来的原始数据难以懂读,因此还需要进行集中化、结构化、标准化处理,让“天书”变成看得懂的信息。
这个过程中,需要建立、应用各类“库”,如行业知识库(包括产品知识库、关键词库、域名知识库、内容知识库);基于“数据格式化处理库”衍生出来的底层库(用户行为库、URL标签库);中层库(用户标签库、流量统计、舆情评估);用户共性库等。
通过多维的用户标签识别用户的基本属性特征、偏好、兴趣特征和商业价值特征。
三、分析用户特征及偏好
将第一方标签与第三方标签相结合,按不同的评估维度和模型算法,通过聚类方式将具有相同特征的用户划分成不同属性的用户族群,对用户的静态信息(性别、年龄、职业、学历、关联人群、生活习性等)、动态信息(资讯偏好、娱乐偏好、健康状况、商品偏好等)、实时信息(地理位置、相关事件、相关服务、相关消费、相关动作)分别描述,形成网站用户分群画像系统。
四、制定渠道和创意策略
根据对目标群体的特征测量和分析结果,在营销计划实施前,对营销投放策略进行评估和优化。如选择更适合的用户群体,匹配适当的媒体,制定性价比及效率更高的渠道组合,根据用户特征制定内容策略,从而提高目标用户人群的转化率。
五、提升营销效率
在投放过程中,仍需不断回收、分析数据,并利用统计系统对不同渠道的类型、时段、地域、位置等价值进行分析,对用户转化率的贡献程度进行评估,在营销过程中进行实时策略调整。

六、营销效果评估、管理
利用渠道管理和宣传制作工具,利用数据进行可视化的品牌宣传、事件传播和产品,制作数据图形化工具,自动生成特定的市场宣传报告,对特定宣传目的报告进行管理。
七、创建精准投放系统
对于有意领先精准营销的企业来说,则可更进一步,整合内部数据资源,补充第三方站外数据资源,进而建立广告精准投放系统,对营销全程进行精细管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28