京公网安备 11010802034615号
经营许可证编号:京B2-20210330
旅游大数据热,运营商能做点什么
随着移动互联网的发展,围绕着每个用户的信息数据正在形成海量存储,而大数据的各种应用也随着成熟起来。在2014年的世界杯期间,很多机构都通过大数据来预测比赛结果,而百度在去年的春节期间联合央视推出了春运迁徙图。
中国是一个人口大国,围绕着各种假日经济,旅游业日渐壮大,但每当黄金周就会遭遇各个景点的人满为患,相关道路的拥堵更是让出行的人焦头烂额。虽然各种机构都在利用自己掌握的数据资料进行分析,对旅游景点的客流疏导做出贡献,但始终难有实质性的效果。分析原因,主要是因为一般的机构掌握的数据并不全面,也无法实时动态的采集到所有游客的即时信息。
现实中,有一个行业在大数据应用中具有得天独厚的条件,那就是通信运营商们。运营商们数以亿计的通信用户基数保证了数据的海量和多元性,这些数据还具有可持续性,运营商可以通过对海量数据的有效分析精准、高效地为广大用户和社会各界提供产品和服务。
比如,通信运营商多年来都在全面采集用户各方面的通信使用信息,包括用户的个人背景资料、实时的移动位置信息,如今还可以获得更多的移动互联网应用情况,只要是加以合理的利用,完全可以准确清晰的分析出行走路线、旅游偏好等等,成为大数据应用的样板。
在这方面,已经有国际上成功的应用案例。据媒体报道,美国运营商Verizon公司在举世闻名的超级碗比赛现场就进行观众分析,短时间内就能得到用户的行为轨迹并对散场后可能的交通情况进行预测,交通部门由此作为依据进行应对,取得了满意的使用效果。比如,信息表明,在超级碗体育场内,从巴尔的摩来的粉丝人数是来自旧金山的三倍,这样的数据通过其他渠道很难获得,可运营商却是手到擒来。
国内,一些运营商也已经开展了类似的大数据应用探索,并逐渐开始展现出巨大的应用前景。比如,某运营商通过对某省内的旅游景区所覆盖的网络信令数据提取,结合云计算分析引擎,站在大数据的视角上,为旅游主管部门和旅游相关从业者的行业决策和运营规划提供了第一手数据支持。
作为旅游主管部门、旅行社或者景区管理方,最关注的无非是四个问题:游客从哪里来?游客怎么来?游客去哪玩?游客怎么玩?要想解决这四个问题,就必须掌握游客的行动轨迹信息,但游客在各个机构填写的表格信息实在有限且不一定按计划执行,家庭及朋友一起自由行的游客更是行踪难觅。在这种时刻,只有几乎能做到人手一部的手机信息能够帮上忙。
根据相关报道,在大数据应用案例实践中,每位游客都有一部手机,即使不是本运营商的用户,也能够通过网间通信数据分析获知,因此,通过对游客号码归属地的调查,获取游客来源信息,包括省内、省外或国外等等,可以清晰列出来到旅游地的主要游客归属地。运营商通过对到访游客的行动轨迹追踪,包括经过的交通枢纽,包括火车站、机场等记录,游客移动速度的分析等进行综合比对,可以还原出游客到达的方式,比如是通过公路、铁路还是航空。通过对景点进行实时的人流量统计,得出每日人流趋势图,并给出游客达到峰值时刻统计,以便健全景区安全预警机制,可以提前行动做好各种保障措施。通过对到达游客的持续跟踪,统计出在单一景区内的游玩时长,并结合游客的上下游出行地点、每日游玩做细、特点活动区域来分析归纳游客的旅游轨迹,以便旅游主管部门及相关从业者为游客制订更个性化的旅游路线套餐,提供配套的餐饮、住宿、娱乐一条龙服务。(此处信息参考了某运营商旅游大数据应用的相关资料)
此外,运营商还可以结合大数据应用和位置服务为旅游景区和游客提供电子导游服务,在游客进入景区之后主动向游客推送景区介绍、消费提醒,还可以监测旅行社的履约情况,有效的监控低价团购物团等侵害消费者利益的行为。
当然,运营商的大数据的应也并非完美,在数据构成上还需要得到补充,如果能够和旅游出行服务的互联网公司达成合作,必将能够提供更多的数据维度,也就对旅游从业机构和普通老百姓有更大的现实价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12