
大数据并不是越多越好 有很多局限_数据分析师
大数据本身是一种实实在在的技术,所以应该不是一种泡沫。但在应用方面,在市场普及过程中,让人们觉得无所不能,其实大数据还是有很多局限。
大数据应该关注的是,如何让数据有用;另一方面,数据是不是越多越好?因为大家觉得是大数据了,不应该把数据浪费掉。但实际上不管你的计算能力有多强,总有一个计算负担限度,首先计算的负担越大,产生有效结果的可能性就越小。现在大家都觉得算法可以解决这个问题,其实不行。
云计算的舞台既有IBM、亚马逊、BAT等巨头,也有身形轻巧的创业公司。
“以前我们害怕BAT这些巨头,就是怕被踩死。”1月26日,云计算创业公司Anchora的CEO鲁为民在接受21世纪经济报道记者专访时表示,目前云计算整个领域都是比较新的,包括一些大公司的商业模式也都在摸索之中。
作为云计算领域的一家创业公司,Anchora旗下的魔泊云(MoPaaS)提供云平台服务,即PaaS(平台即服务)。在2011年回国创业之前,鲁为民曾在美国做过一个云计算项目。即使现在他也经常返回硅谷,和朋友交流最新的云技术和行业动态,以便在国内尝试。
鲁为民并不否认曾经对巨头的顾虑,但他认为,目前这个行业越来越成熟,无论百度还是腾讯、阿里,听得最多的关键词都是“开放”,比如百度要开放数据,腾讯要开放服务,均是以一种开放的心态来和第三方合作。
“云服务被视为一个很好的模式,但目前还很难赚钱。”鲁为民表示,目前在技术层面,国内和国外相差无几,主要的差距还是在应用层面,“在中国,某种程度上技术是超前的,但应用跟不上,可能还需要十年时间才能完全匹配”。
承上启下的中间平台
《21世纪》:魔泊云(MoPaaS)的商业模式是什么?
鲁为民:经过市场分析,我们发现很多企业并不在意你是做云计算的哪一块儿,他们希望自己的业务可以尽快部署好,所以MoPaaS的定义是基于IaaS(互联网即服务)之上、SaaS(软件即服务)之下的所有内容。MoPaaS希望在中间起到了承上启下的重要作用,并立志于打造一个融合的生态环境。
你可以将其理解为一个云开放平台,上接IaaS提供商,下游和SaaS合作,中间层除了自己提供的一些开发、调试工具和资源外,也会接入很多第三方的资源,让开发者在我们的平台上可以得到一站式的服务。
同时我们也为客户提供私有云平台的技术解决方案,涉及的领域包括:国内外一些有实力的IT整体解决方案的公司,学校园区等政府机构,以及金融保险公司等等。
《21世纪》:IaaS、PaaS和SaaS等云计算的三个层级中,PaaS被认为难以建立很好盈利模式的环节,你们为何依然专注这个领域?和之前的PaaS有何不同?
鲁为民:一般情况下,IaaS只为客户提供虚拟主机等最基础的服务,但这对于开发者而言显然是不够的,所以需要MoPaaS这样的平台提供应用开发、测试、调试等工具和资源等,上层承载SaaS,提供在线软件服务。
我将之前的PaaS归为第一代 PaaS,他们有几个问题:一是与提供基础的IaaS割裂,没有很好的连接融合,满足不了开发者的需求;二是主要面对个体开发者,导致盈利很难;还有一些PaaS选择了相对封闭的模式,不够开放。因此,很多人不看好这种模式。
但我们一直认为,这个领域还是存在很大的机会,尽管目前很多企业已经升级为SaaS,但对于主流SaaS提供商而言,大多不会把更多精力投入到底层IaaS和中间层PaaS上,所谓术业有专攻。
同时,传统的IT公司转型做IaaS和SaaS是比较容易的事情,但对于PaaS这部分需要有强大的技术实力来支持,虽然门槛很高,但市场机遇也更广阔。
我们目前的模式和以前有所不同,是一个云开放平台,不仅面对个人开发者,也面临企业级用户,可以解决盈利的问题。
《21世纪》:目前有哪些合作伙伴?利益如何分配?
鲁为民: MoPaaS整合了上下游的一些云计算公司,下游的IaaS和上游的SaaS,只要是在这个生态中的都可以是我们的合作伙伴。目前我们跟一些大的云公司,例如华为、金山云、腾讯云、青云、Ucloud等都建立了合作关系。SaaS的部分我们整合了一些类似支付、CSDN、OSC、Gitcafe、Github、人脸识别技术等SaaS的技术功能。而合作的方式是多方面的,例如资源的互相调用,提供解决方案,以及分成,甚至建立合资公司等等。
大数据还是有很多局限
《21世纪》:你刚回国也做过一年的大数据,为什么放弃而转做云计算?
鲁为民:大数据当时是比较新的东西,了解的人不多。当时我们基于hadoop做了一些数据的处理、存储和检索的应用。但后来发现,很少有人用,那么用户离技术太远,没有一个好的框架让用户来使用一个好的工具。
我们之后就觉得与其提供这种零散的服务,不如找一个好的框架把服务包装起来,而当时 PaaS刚刚在硅谷开始,所以顺着这个方向完成转型。
《21世纪》:大数据和云计算常被同时提起,你如何看待这两者之间的关系?
鲁为民:两者关系紧密,就像我们的转型,以前的大数据很自然而然地成为我这个云平台的一部分。这些数据除了我们自己使用之外,也可以提供给客户。
PaaS主要是跟应用接近,因为我们是支撑应用。现在很多应用离不开数据,比如一个应用想了解用户的行为,那么就需要收集很多大数据,此外,用户和应用的交互很多方面也是通过数据来完成的。我们的云平台实际很重要的模块,就是提供各种各样的数据服务,数据服务是属于平台服务的一部分。
从大的方面看,这两者之间是提供相互支撑的。大数据是云计算主要的一个应用,同时云计算为大数据提供一些能力,对有效地处理大数据有很大帮助。
《21世纪》:你如何看待目前大数据的发展?
鲁为民:大数据本身是一种实实在在的技术,所以应该不是一种泡沫。但在应用方面,在市场普及过程中,让人们觉得无所不能,其实大数据还是有很多局限。
大数据应该关注的是,如何让数据有用;另一方面,数据是不是越多越好?因为大家觉得是大数据了,不应该把数据浪费掉。但实际上不管你的计算能力有多强,总有一个计算负担限度,首先计算的负担越大,产生有效结果的可能性就越小。
现在大家都觉得算法可以解决这个问题,其实不行,包括深度学习实际上只是个算法。如果数据杂质太多就会拉低结果的准确性。我觉得应该把数据当作一种链的概念来处理。就是数据从进来到出来,每一个环节都应该有一定的处理,像清洗、删选等。同时数据链的每个环节应该都有交互,数据处理完之后的信息必须提供给环节,或者后阶段的环节反馈给前面产生一个更好的结果。只有从系统的科学角度来考虑才能处理,而不是直接把数据拿来就学习,这不太可能。
算法提供的东西实际上越来越有限,更多的是数据本身,如何用最少的有效数据,让计算变得更简单,这样才能对它进行实时的处理,才能及时地给用户提供有效的数据。
投资者还在观察PaaS
《21世纪》:从市场来看,目前IT行业和传统行业的需求有何不同?这两个行业在使用云计算过程中存在什么样的问题?
鲁为民:传统的企业以及IT行业对PaaS都有需求,IT企业接触PaaS相对更早一些,传统企业相对较慢一些。传统企业的技术团队可能要重新学习新的技术规范,因此,传统企业中,高层都会大力支持,但下面的执行团队可能还需要一些时间适应。
《21世纪》:资本目前如何看待云计算的创业公司?
鲁为民:资本层面上来说,从去年到现在,对IaaS模式已经很熟悉了,一些创业公司都获得了很大的融资,至少在这部分已经形成共识。
而PaaS,投资者还在观察,但是我相信不会太远了,我们已经获得了资本市场的一些融资,因为价值已经体现了,收入也增加了,相信接下来资本市场会更关注这一块儿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28