京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据并不是越多越好 有很多局限_数据分析师
大数据本身是一种实实在在的技术,所以应该不是一种泡沫。但在应用方面,在市场普及过程中,让人们觉得无所不能,其实大数据还是有很多局限。
大数据应该关注的是,如何让数据有用;另一方面,数据是不是越多越好?因为大家觉得是大数据了,不应该把数据浪费掉。但实际上不管你的计算能力有多强,总有一个计算负担限度,首先计算的负担越大,产生有效结果的可能性就越小。现在大家都觉得算法可以解决这个问题,其实不行。
云计算的舞台既有IBM、亚马逊、BAT等巨头,也有身形轻巧的创业公司。
“以前我们害怕BAT这些巨头,就是怕被踩死。”1月26日,云计算创业公司Anchora的CEO鲁为民在接受21世纪经济报道记者专访时表示,目前云计算整个领域都是比较新的,包括一些大公司的商业模式也都在摸索之中。
作为云计算领域的一家创业公司,Anchora旗下的魔泊云(MoPaaS)提供云平台服务,即PaaS(平台即服务)。在2011年回国创业之前,鲁为民曾在美国做过一个云计算项目。即使现在他也经常返回硅谷,和朋友交流最新的云技术和行业动态,以便在国内尝试。
鲁为民并不否认曾经对巨头的顾虑,但他认为,目前这个行业越来越成熟,无论百度还是腾讯、阿里,听得最多的关键词都是“开放”,比如百度要开放数据,腾讯要开放服务,均是以一种开放的心态来和第三方合作。
“云服务被视为一个很好的模式,但目前还很难赚钱。”鲁为民表示,目前在技术层面,国内和国外相差无几,主要的差距还是在应用层面,“在中国,某种程度上技术是超前的,但应用跟不上,可能还需要十年时间才能完全匹配”。
承上启下的中间平台
《21世纪》:魔泊云(MoPaaS)的商业模式是什么?
鲁为民:经过市场分析,我们发现很多企业并不在意你是做云计算的哪一块儿,他们希望自己的业务可以尽快部署好,所以MoPaaS的定义是基于IaaS(互联网即服务)之上、SaaS(软件即服务)之下的所有内容。MoPaaS希望在中间起到了承上启下的重要作用,并立志于打造一个融合的生态环境。
你可以将其理解为一个云开放平台,上接IaaS提供商,下游和SaaS合作,中间层除了自己提供的一些开发、调试工具和资源外,也会接入很多第三方的资源,让开发者在我们的平台上可以得到一站式的服务。
同时我们也为客户提供私有云平台的技术解决方案,涉及的领域包括:国内外一些有实力的IT整体解决方案的公司,学校园区等政府机构,以及金融保险公司等等。
《21世纪》:IaaS、PaaS和SaaS等云计算的三个层级中,PaaS被认为难以建立很好盈利模式的环节,你们为何依然专注这个领域?和之前的PaaS有何不同?
鲁为民:一般情况下,IaaS只为客户提供虚拟主机等最基础的服务,但这对于开发者而言显然是不够的,所以需要MoPaaS这样的平台提供应用开发、测试、调试等工具和资源等,上层承载SaaS,提供在线软件服务。
我将之前的PaaS归为第一代 PaaS,他们有几个问题:一是与提供基础的IaaS割裂,没有很好的连接融合,满足不了开发者的需求;二是主要面对个体开发者,导致盈利很难;还有一些PaaS选择了相对封闭的模式,不够开放。因此,很多人不看好这种模式。
但我们一直认为,这个领域还是存在很大的机会,尽管目前很多企业已经升级为SaaS,但对于主流SaaS提供商而言,大多不会把更多精力投入到底层IaaS和中间层PaaS上,所谓术业有专攻。
同时,传统的IT公司转型做IaaS和SaaS是比较容易的事情,但对于PaaS这部分需要有强大的技术实力来支持,虽然门槛很高,但市场机遇也更广阔。
我们目前的模式和以前有所不同,是一个云开放平台,不仅面对个人开发者,也面临企业级用户,可以解决盈利的问题。
《21世纪》:目前有哪些合作伙伴?利益如何分配?
鲁为民: MoPaaS整合了上下游的一些云计算公司,下游的IaaS和上游的SaaS,只要是在这个生态中的都可以是我们的合作伙伴。目前我们跟一些大的云公司,例如华为、金山云、腾讯云、青云、Ucloud等都建立了合作关系。SaaS的部分我们整合了一些类似支付、CSDN、OSC、Gitcafe、Github、人脸识别技术等SaaS的技术功能。而合作的方式是多方面的,例如资源的互相调用,提供解决方案,以及分成,甚至建立合资公司等等。
大数据还是有很多局限
《21世纪》:你刚回国也做过一年的大数据,为什么放弃而转做云计算?
鲁为民:大数据当时是比较新的东西,了解的人不多。当时我们基于hadoop做了一些数据的处理、存储和检索的应用。但后来发现,很少有人用,那么用户离技术太远,没有一个好的框架让用户来使用一个好的工具。
我们之后就觉得与其提供这种零散的服务,不如找一个好的框架把服务包装起来,而当时 PaaS刚刚在硅谷开始,所以顺着这个方向完成转型。
《21世纪》:大数据和云计算常被同时提起,你如何看待这两者之间的关系?
鲁为民:两者关系紧密,就像我们的转型,以前的大数据很自然而然地成为我这个云平台的一部分。这些数据除了我们自己使用之外,也可以提供给客户。
PaaS主要是跟应用接近,因为我们是支撑应用。现在很多应用离不开数据,比如一个应用想了解用户的行为,那么就需要收集很多大数据,此外,用户和应用的交互很多方面也是通过数据来完成的。我们的云平台实际很重要的模块,就是提供各种各样的数据服务,数据服务是属于平台服务的一部分。
从大的方面看,这两者之间是提供相互支撑的。大数据是云计算主要的一个应用,同时云计算为大数据提供一些能力,对有效地处理大数据有很大帮助。
《21世纪》:你如何看待目前大数据的发展?
鲁为民:大数据本身是一种实实在在的技术,所以应该不是一种泡沫。但在应用方面,在市场普及过程中,让人们觉得无所不能,其实大数据还是有很多局限。
大数据应该关注的是,如何让数据有用;另一方面,数据是不是越多越好?因为大家觉得是大数据了,不应该把数据浪费掉。但实际上不管你的计算能力有多强,总有一个计算负担限度,首先计算的负担越大,产生有效结果的可能性就越小。
现在大家都觉得算法可以解决这个问题,其实不行,包括深度学习实际上只是个算法。如果数据杂质太多就会拉低结果的准确性。我觉得应该把数据当作一种链的概念来处理。就是数据从进来到出来,每一个环节都应该有一定的处理,像清洗、删选等。同时数据链的每个环节应该都有交互,数据处理完之后的信息必须提供给环节,或者后阶段的环节反馈给前面产生一个更好的结果。只有从系统的科学角度来考虑才能处理,而不是直接把数据拿来就学习,这不太可能。
算法提供的东西实际上越来越有限,更多的是数据本身,如何用最少的有效数据,让计算变得更简单,这样才能对它进行实时的处理,才能及时地给用户提供有效的数据。
投资者还在观察PaaS
《21世纪》:从市场来看,目前IT行业和传统行业的需求有何不同?这两个行业在使用云计算过程中存在什么样的问题?
鲁为民:传统的企业以及IT行业对PaaS都有需求,IT企业接触PaaS相对更早一些,传统企业相对较慢一些。传统企业的技术团队可能要重新学习新的技术规范,因此,传统企业中,高层都会大力支持,但下面的执行团队可能还需要一些时间适应。
《21世纪》:资本目前如何看待云计算的创业公司?
鲁为民:资本层面上来说,从去年到现在,对IaaS模式已经很熟悉了,一些创业公司都获得了很大的融资,至少在这部分已经形成共识。
而PaaS,投资者还在观察,但是我相信不会太远了,我们已经获得了资本市场的一些融资,因为价值已经体现了,收入也增加了,相信接下来资本市场会更关注这一块儿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12