京公网安备 11010802034615号
经营许可证编号:京B2-20210330
把大数据变小_数据分析师考试
我并不喜欢所谓的“大数据”概念,因为数据无所谓大小,任何数据如果不应用到实际的分析之中都是没有价值的。而数据的深度分析,对于从事市场开拓和交易买卖的专业人员,自古就是非常重要的日常工作。之所以现在很多IT人喊出“大数据”的概念,更多的还是因为他们以往只关心数据的关系,而没有进一步去想想数据背后的生活信息。
回想二十年前,对于市场中传统的数据分析师,互联网在全球商用普及更多的是噩梦般的记忆——信息突然“爆炸”了,各种非认证的信息源发布的数据充斥在网上,这和今天微信、微博上的虚假信息泛滥其实是一个道理。所谓的“大数据”背后,是缺乏认证和推敲的信息泛滥,而非数据应用领域的免费大餐。因此,高层近期出台相关政策,规范以微信为主的互联网交互平台“公共信息源”认证,其实是帮了微信一个忙,压缩了泛滥信息的体量。
广义上说,我们今天津津乐道的互联网服务提供商三巨头BAT,其核心价值都是压缩这些泛滥的信息,把大数据变小而易于客户应用。最明显的是阿里巴巴的电商服务,成千上万的网站贩卖的是同质化很强的各类商品,阿里巴巴所提供的是一种便捷的通道和第三方信誉保障,从而能把货物买方所拥有的大量需要分析的信息,压缩到一个有逻辑的选择序列。
腾讯则是成功地压缩了社交网站的泛滥信息。传统的交朋友成本比较高,限制了人类的社交圈;而互联网初期的社交网站虽然成本低,但是未知朋友圈泛滥,一不小心就交友不慎,心情大坏。以QQ、微信为代表的互联网交互平台,在交友低成本和网络化扩张中间找到平衡,成功地取代了信息泛滥化的微博,再次印证信息时代的经济学规律。
正是因为阿里和腾讯找到了可持续发展的信息经营路径,任何互联网在实际生活和商务中的应用,都被用作加强其路径模式的工具。以方兴未艾的互联网金融为例,阿里和腾讯所追求的并非是互联网金融本身的利润规模,而是能否通过互联网金融的应用,强化其在“大数据变斜的路径中的霸主地位。
在这一点上,百度的处境略显尴尬,因为百度的竞争对手太多,且细分领域太多。百度从诞生伊始,就是最典型的“大数据变斜业务模式,其所追求的一直是“用户顺畅迅捷的使用体验、便捷地获取信息和服务”。因此,百度的核心竞争力就在于极尽简单的“框界面”,背后则是对海量信息的知识库结构细化。
随着信息量的增加,百度作为“互联网百科全书”的地位维护成本,逐渐变得“不经济”起来。还是以互联网金融为例,越来越多的金融“互联网百科全书”开始在金融信息领域挑战百度的地位,传统金融服务的互联网化,又让这些金融“大数据变斜提供商得到难得的发展机遇。
例如,生活中投资理财的潜在客户,需要一个网站帮助发掘和查询适合他们的理财产品,把泛滥在网上的金融服务提供商,顺畅便捷地“送到”他们的信息终端(手机或电脑)。于是乎,越来越多的网站开始试图为这类客户构建一个跨银行、基金、证券、信托的“我的投资”的服务,让更多有理财需求的客户成为注册客户,这恰恰是百度梦寐以求想实现的“通过注册而黏住客户”。
再比如,很多高端的专业金融信息服务也需要将“大数据变斜。基金、券商、银行的行业研究员、上市公司研究员等,都需要使用大量的搜索来查阅和分析各种数据;大量投资机构包括私募基金的投资经理,也需要在海量的数据中分析行业、企业。这些用户所需要的,是对金融信息的精准搜索,而他们精准搜索的过程本身,也是极具价值的数据源。
可见,互联网金融的应用端,如第三方支付、众筹股权融资、广义的P2P债券融资交易,恐怕还需要专业的金融机构去经营。但是互联网金融的“大数据变斜服务端,百度是必须要抢的,否则,在未来的竞争中,金融服务领域的BAT格局恐怕会被打破。阿里和腾讯已经在各自领域“挟金融服务以巩固地位”,百度如果还是“走老路”向付费的金融机构倾斜流量,必将失去对金融客户的公信力和吸引力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07