
把大数据变小_数据分析师考试
我并不喜欢所谓的“大数据”概念,因为数据无所谓大小,任何数据如果不应用到实际的分析之中都是没有价值的。而数据的深度分析,对于从事市场开拓和交易买卖的专业人员,自古就是非常重要的日常工作。之所以现在很多IT人喊出“大数据”的概念,更多的还是因为他们以往只关心数据的关系,而没有进一步去想想数据背后的生活信息。
回想二十年前,对于市场中传统的数据分析师,互联网在全球商用普及更多的是噩梦般的记忆——信息突然“爆炸”了,各种非认证的信息源发布的数据充斥在网上,这和今天微信、微博上的虚假信息泛滥其实是一个道理。所谓的“大数据”背后,是缺乏认证和推敲的信息泛滥,而非数据应用领域的免费大餐。因此,高层近期出台相关政策,规范以微信为主的互联网交互平台“公共信息源”认证,其实是帮了微信一个忙,压缩了泛滥信息的体量。
广义上说,我们今天津津乐道的互联网服务提供商三巨头BAT,其核心价值都是压缩这些泛滥的信息,把大数据变小而易于客户应用。最明显的是阿里巴巴的电商服务,成千上万的网站贩卖的是同质化很强的各类商品,阿里巴巴所提供的是一种便捷的通道和第三方信誉保障,从而能把货物买方所拥有的大量需要分析的信息,压缩到一个有逻辑的选择序列。
腾讯则是成功地压缩了社交网站的泛滥信息。传统的交朋友成本比较高,限制了人类的社交圈;而互联网初期的社交网站虽然成本低,但是未知朋友圈泛滥,一不小心就交友不慎,心情大坏。以QQ、微信为代表的互联网交互平台,在交友低成本和网络化扩张中间找到平衡,成功地取代了信息泛滥化的微博,再次印证信息时代的经济学规律。
正是因为阿里和腾讯找到了可持续发展的信息经营路径,任何互联网在实际生活和商务中的应用,都被用作加强其路径模式的工具。以方兴未艾的互联网金融为例,阿里和腾讯所追求的并非是互联网金融本身的利润规模,而是能否通过互联网金融的应用,强化其在“大数据变斜的路径中的霸主地位。
在这一点上,百度的处境略显尴尬,因为百度的竞争对手太多,且细分领域太多。百度从诞生伊始,就是最典型的“大数据变斜业务模式,其所追求的一直是“用户顺畅迅捷的使用体验、便捷地获取信息和服务”。因此,百度的核心竞争力就在于极尽简单的“框界面”,背后则是对海量信息的知识库结构细化。
随着信息量的增加,百度作为“互联网百科全书”的地位维护成本,逐渐变得“不经济”起来。还是以互联网金融为例,越来越多的金融“互联网百科全书”开始在金融信息领域挑战百度的地位,传统金融服务的互联网化,又让这些金融“大数据变斜提供商得到难得的发展机遇。
例如,生活中投资理财的潜在客户,需要一个网站帮助发掘和查询适合他们的理财产品,把泛滥在网上的金融服务提供商,顺畅便捷地“送到”他们的信息终端(手机或电脑)。于是乎,越来越多的网站开始试图为这类客户构建一个跨银行、基金、证券、信托的“我的投资”的服务,让更多有理财需求的客户成为注册客户,这恰恰是百度梦寐以求想实现的“通过注册而黏住客户”。
再比如,很多高端的专业金融信息服务也需要将“大数据变斜。基金、券商、银行的行业研究员、上市公司研究员等,都需要使用大量的搜索来查阅和分析各种数据;大量投资机构包括私募基金的投资经理,也需要在海量的数据中分析行业、企业。这些用户所需要的,是对金融信息的精准搜索,而他们精准搜索的过程本身,也是极具价值的数据源。
可见,互联网金融的应用端,如第三方支付、众筹股权融资、广义的P2P债券融资交易,恐怕还需要专业的金融机构去经营。但是互联网金融的“大数据变斜服务端,百度是必须要抢的,否则,在未来的竞争中,金融服务领域的BAT格局恐怕会被打破。阿里和腾讯已经在各自领域“挟金融服务以巩固地位”,百度如果还是“走老路”向付费的金融机构倾斜流量,必将失去对金融客户的公信力和吸引力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20