京公网安备 11010802034615号
经营许可证编号:京B2-20210330
警惕!大数据营销中你丢了什么_数据分析师
什么是大数据营销?大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
大数据营销给企业的好处是什么
以往企业做营销宣传基本是一对多的模式,即选定一个大的平台,在这上面做营销推广,利用平台优势去影响更多的用户。这样的广告效果在早先还是比较有效,但是随着用户接受内容的渠道和生活习惯行为的变化,这样的粗放式营销手段已经对用户产生不了推动性效果。这时企业需要在有限的时间内,利用精准的营销内容来吸引目标消费者。
企业在以往会通过不同渠道收集到大量的用户数据,之前这样零散、独立的数据似乎对于企业作用并不大,但是现在技术分析能力的加强,让企业可以通过这些数据对用户特征进行挖掘和分析。
在数据分析的基础上会得到用户的个性,帮助企业定位受众目标用户,在推广营销内容的时候会做精准拼配,这样做的好处是让营销内容更加有针对性,可以满足用户的需求,而不是和用户本身需求无关的内容。
比如时趣为宝洁做的营销案例,首先,对宝洁旗下七大品牌用户进行了深度的洞察,调查发现目标消费者标签中,“男神”重合的比例尤为突出,于是一个以“男神”为着力点的创意,拉开了一场由线下到线上的遥相呼应的“买洗发水 送男神”的营销战役。
正是因为前期做了用户属性的精准定位,在短短一周内,本次活动不仅实现了580多万次的曝光及8500多次的媒体互动;更成功为1号店引流,拉动了销售量的提升。对比去年同期,宝洁洗发护发品类的销量提升了118%+。
从这可以看到大数据营销对于企业有很大的帮助,正是因为这样越来越多的企业开始做大数据营销,但一些企业在这中间发现自己的做的大数据营销似乎并不准确和有效,那么什么导致这样的结果呢?
过程数据的丢失让企业很受伤
营销过程中数据分为结果性数据和过程性数据,只现在多数企业在做大数据营销的时候往往关注的是营销过程中结果性数据,把结果性数据作为主导参考标准,只是结果性数据具有一定的欺骗性和不确定性。而很多企业营在销过程中大量的过程性数据被忽视,其实这样的过程数据对于营销依然十分重要。
举个例子来说,你是卖手机的企业,你关心今年有多少人买了我的手机,这个就是结果数据,这个数据是客户比较关心的。而这一年中买了手机的人有多少人在维修过程中和客服沟通了多少次,每次沟通时长是多少、沟通频率是多少以及在营销活动中用户表现出来的兴趣和潜在消费者都是过程性数据。
在营销过程中,这些中间的数据是没有被利用到,也没有记录下来,导致在营销中出现只有营销的行为,却无法衡量营销的效果。这好比是我就知道手机卖了,但不知道卖个了谁。如果把这些过程数据收集起来能够进行再营销的话(ReMarketing),转化率和投资回报率都会得到巨大的提升。
随着技术的发展,现在我们已经可以利用技术手段去追踪分析过程数据,并且不断进行优化,从而可以更好地衡量营销活动的效果,例如通过结合客户的业务场景和营销需求还可以更深入地挖掘这些数据的价值。
大数据能够让企业发现营销机遇,如潜在客户、新市场规律、回避经营风险等,根据用户的精准画像还可以及时调整营销策略和手段。但企业在运用大数据营销过程中的数据不能忽视,一定要将数据追踪和挖掘才能营销做的更理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28