
媒体人如何玩转大数据_数据分析师
早些年做记者的时候,看着自己署名的稿子登在报上,我会想,到底有多少人看过我的这篇文章呢?他们到底是怎么想的呢?然而我和我的读者之间的沟通,仅限于每月收到的读者来信,当然还有最重要的读者——报社领导,他们每天都会给我的稿子打分评ABC级。
这就像一个厨师,他做的菜端出去给客人了。但他很少有机会得到来自食客的反馈:咸了还是淡了?这多少让人有些不安。
但如今,那个“传统媒体时代”渐渐远去了,互联网+来了,大数据来了,现在作为媒体人,你不光可以知道客人对菜品的评价,还可以用产品思维做出漂亮的数据新闻分析报告。
其实,媒体进行数据挖掘,呈现给读者数据新闻产品,有先天的独特的优势。不要畏惧市面上各类的研究咨询机构:比如易观国际,比如艾瑞咨询,比如波士顿,比如麦肯锡,你有他们没有的。
一、媒体人可以便捷地利用外脑。几乎每一个成熟的媒体机构都会有长长的专家名录,这是媒体的外脑,通过和各种大V的交流,你可以得到行业内最领先的资讯。其实现在很多大V也很寂寞的,博客时代他们可以写博文,但是自媒体时代,信息流太大,大V们作为意见领袖,空间被挤压了很多,他们的音量不再像从前那么大,这个时候,在提供对商业数据洞察方面,大v们绝对是媒体人的好搭档。而在利用外脑这一方面,传统的商业调查机构并没有媒体机构有优势。
二、被商业绑架的数据陷阱太多,而媒体的数据新闻产品可以更中立和可观。从这个意义上说,媒体从事数据挖掘,比传统的商业调查机构更有公信力。
三、媒体的数据新闻产品更具热点和时效性。媒体在报道新闻时,最看重的就是时效,而一份优质的研究报告同样要紧贴前沿和热点。媒体本身有产品化的基因,我们也可以做产品的方式做新数据新闻产品。
另外要注意的是,面对这么多数据,不能像玩魔方,拧来拧去浪费时间,在策划一个数据新闻产品前,我们首先要明确的是:你要回答什么问题?你要怎么用数据?这个时代不缺数据,缺的是用数据的能力。
所有产品经理都想弄懂一件事:我的用户到底是怎么想的。媒体人同样要挖掘用户的痛点,泪点,弱点。我们可以研究现状:比如,朋友圈里心灵鸡汤为何盛行?微信人性中哪些被激发?可以研究过去:一年间用户送出了多少赞?也可以研究不同行业之间共同性。总之要研究规律性的问题,研究趋势后面的人性,研究用户价值链上的位置。当然,媒体在从事大数据挖掘时有一些劣势:比如人才的缺乏——在职的编辑记者未必受过商业分析的专业培训,比如不同部门之间的数据交换和打通可能存在困难。
像微博、微信、qq各类门户网站每分每秒都在产生用户数据,如果能把这些商业数据做一个简单的提取,也许就能得出一些很有价值的结论,遗憾的是目前这方面的实践并不多。
用有洞察力的眼睛去唤醒那些沉睡的数据吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10