京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代“标签效应”可以用来做什么
有没有注意这样一个有趣的现象:很多人常以“屌丝”自嘲,却在别人眼中成了“高富帅”。出自90后口中的“大叔”,却成为70后眼里的“小青年”。这就是标签,同样人或事,不同人就会给出不一样的标签。
在标签面前,每个人都不能“幸免”。从小到大一定被贴过各种不同的标签,还记得让你印象最深的标签是什么?你认为最能代表自己的标签又是什么?
起初,标签是为了区分个体差异,以便形成和保存清晰的记忆。
刚出生时,人先被区分性别,男或女。
接着又为区分年龄大小,因此有儿童、少年,青年,中年、老年……
到后来,标签成为一种评价。
学习优品德好的是“三好学生”,反之就是差生。听家长老师指挥的就是“乖孩子”,顽皮捣蛋的又是“坏孩子”。
如今,标签又发展到被用于人群划分归类,如“剁手党”、“广场舞大妈”、“暖男”等等。与此同时,标签开始发挥其定性导向的作用,影响着人的行为习惯。
标签无论是“好”是“坏”,它对一个人的“个性意识的自我认同”都有强烈的影响作用。当一个人被一种词语名称贴上标签时,他就会作出自我印象管理,使自己的行为与所贴的标签内容相一致。这种现象被称为“标签效应”。
而标签效应,如今又被广泛应用于电子商务的营销推广。通过数据分析,将被贴标签人群继续细分,针对细分人群,进行匹配的商品推荐,以达到精准营销的商业化运用。
就拿“剁手党”例举。(专指沉溺于网络购物的人群,以女生居多。这些人每日游荡于各大购物网站,兴致勃勃地搜索、比价、秒拍、购物。周而复始,乐此不疲。)
首先按照网购花费不同,剁手党一般被分为六个等级:
500元以下:勤俭持家型;
500~5000元:普通青年型;
5000~1万元:铺张浪费型;
1~3万元:剁手型;
3~5万元:应该被拉出去枪毙型;
5万元以上:枪毙10分钟都不为过分。
第二步,再分析出每个等级的人数占比,依次排名:
令人意外的是,该枪毙的人数占比最大,超过40%,其次是剁手型25%,要被枪毙10分钟有20%。显然,铺张浪费型如今已经算不上浪费,和普通青年、勤俭持家型一起组成了剩余15%的人群。
通过对标签人群的初步分类,再往深一步,对剁手党的购物数据、位置数据、社交数据等多维数据进行挖掘,将分散数据集中化,商家就能准确找到自己的目标客户,管理自己的客户,直接提升营销效果。
“标签效应”引导剁手党寻找与购买想要的商品,而商家通过标签寻找目标客户,“标签效应”好比两者间的桥梁,架接匹配了双方的需求。
又如目前网络流行的关键词:“拖延症患者”、“穷癌晚期”,探究适合这样标签的又是怎样一群人?什么年龄段?男女比例?他们的喜好是什么?什么商品他们最喜欢?哪些商家是他们最迫切想找到的……
人人都在谈论大数据,但其实大数据并不一定是“大”的,不意味着它的量级有多大,覆盖的范围有多宽广,而是可以接地气,仅仅只是用来分析某一标签人群的喜好和最适合他的商品,并付之推荐。
大数据,标签效应,如果将两者融合,又会产生怎样的化学反应?
近日,无意间发现,居然真有这样一个比赛,阿里巴巴集团和阿里妈妈把大数据和标签效应结合运用到商业实战当中——数据科学家大赛。
大赛向任何人开放,给你一个真实的案例标签,你可以展开自己的思维天马行空,运用数据去计算去分析,根据商家的营销需求,对某一标签人群做一个画像描述,然后找到最匹配的商家,完成一套完整的营销方案设计,参加评比,还有丰厚奖励。
不管你是数据方面的专家,或是网购达人,只要能运用数据分析,能自圆其说,是比赛展示,也是相互切磋学习,何不一试身手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27