
散点图,如果学过我们前面创意图表系列的话,这种图表应该非常熟悉了。
散点图,在图表界有万表之王的称号。
这可不是我随便封的。
美国权威心理学专刊《Journal of the History of the Behavioral Sciences》(行为科学史杂志)在2005年一篇论文中如此评价散点图:
“most versatile, polymorphic, and generally useful invention in the history of statistical graphics”这是信息图表史上功能最多,形式多样,应用范围极为广阔的一个伟大发明!
散点图能获此评价,绝对不是吹出来的。
正如它的名字一样,散点图,可以一堆纷乱如麻,看似无迹可寻的数据显示出内在的关系逻辑来。
散点图已经不仅仅是一个图表了,它已经演化为一个强大的分析工具,可以这么说,散点图,就是为大数据而生的!
下面,还是让我们一起回顾一下散点图的前世今生吧。
认识散点图
散点图,是绘制在X轴和Y轴坐标系中,可以同时表述两个变量的一组数据点。这些大量的数据点组合在一起,形成了一些形状,揭示了数据背后的相关信息。
在这个散点图中,就揭示了不同系列的产品中,销售量与产品收入之间的关系模式。
散点图溯源
说起散点图的来由,如果你读过我们启视录系列前面几篇的话,一定会想到一个名字:William Playfair。这是信息图史上一个神一般的存在,他将折线图、饼图还有条状图带到了我们这个世界上。
可是,这一次你猜错了。
散点图不是普莱费尔发明的。
事实上,散点图的出现如同它的名字一样,散乱不堪,无法理出一个有序的线索出来。
其实,对于散点数据的的视觉化应用,由来已久。好几百年以来,人们一直将这些点放置在地图,或者笛卡尔坐标系中。后来人们逐渐意识到,当这些数据以不同参数,放置在直角坐标系中,很多不为人知的故事会偷偷地浮现出来。于是,散点图逐渐开始流传开来。
所以只能这么说,散点图,是广大数据民工在长期的生产实践中,通过不断的探索和研究,最终发明出来的。
而William Playfair爵士之所以会与这个伟大的发明擦肩而过,主要是因为,他发明的图表都是基于时间序列的,而散点图却不再拘泥于时间这个基本的变量。
散点图从一开始的默默无闻,到最后轰动科学界,直到最后加冕图表之王,其实也就是百十年的事。但是通过散点图带来的很多伟大的发现,则彻底改变了我们的世界观,推动了科学的发展。
1905年,丹麦科学家Danish astronomer Ejnar Hertzprung,在将一些恒星的亮度等级(绝对亮度}和他们的颜色(按光谱从蓝白到红色排列)进行对比的时候,他注意到这其中似乎有着某些相关性。但是他一直没有找到其中的奥秘。
直到1913年,美国天文学家Henry Norris Russell独立发表论文,阐述了这个改变我们认知宇宙的新发现。
没错,正是通过散点图,他将恒星的按光谱和亮度两个参数进行排列分析后发现,从高亮度低光谱(左上)到低亮度高光谱(右下)形成了一条明显的趋势线,而在左上角,还有一团比较密集的数据。
Henry意识到,这条趋势线,或许正揭示了恒星从蓝白色的新星到红色的老星的一个演变的过程,也就是说,他发现了恒星一生的秘密。而左上角的那些数据,则是由一些暮年的红巨星所集合而成。
这就是后来我们所熟知的恒星的一生:原恒星—-主序星—-红巨星—-白矮星—-黑矮星
这是重新绘制的由2200颗恒星数据所组成的Henry Norris Russell散点图,我们的太阳目前大致位于光序1(竖轴)色谱1.0左右的位置上,主序星阶段,正值壮年!
散点图的应用
显而易见,散点图是一种应用非常广泛的图表,而且具有其他图表所没有的独特优势。
不像其他图表的单一特性,散点图不光可以显示趋势,还能显示集群的形状,以及在数据云团中各数据点的关系——这在大数据应用中是极为重要的一点。
无论是探寻肺活量与自由潜水的深度的关系,还是研究地震强度与持续时间之间的关联,或者对比不同部门利润与支出的数据,我们都可以用散点图来进行不同方位解读。
下面就是散点图所经常表现出来的几种趋势:
这里要注意的是,并不是所有的相关关系都是简单的因果关系,要注意其他变量的存在以及对数据的影响。
散点图的最佳设计应用
对于散点图,我们现在已经有了大致的一些了解,现在让我们来看看散点图设计中的一些基本原则吧
这个应该是我们反复强调的了,Y轴从非零开始的话会截断数据,造成误读。
通过改变数据点的大小和颜色,来表示数据值的区别
趋势线可以用来显示数据变化的趋势
太多趋势线,反而搅乱视线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15