
数据可视化知识贴①:激情四溢热力图
热力图在传统坐标系中比较少见,但是如果是在现代SIG(地理空间数据可视化)中,没有比热力图使用更广泛的了。
什么是热力图?
所谓热力图(heat map),又叫等值线地图(choropleth map),是超越了传统地图意义的一种新型的地图。
首先,它是根植于传统地图的,一张热力图上的边界,一般是按照传统地图上的市、省、国家的行政区域边界来划分。
其次,热力图以不同的颜色来对各个地区的不同情况予以显示。不同的颜色可以表示不同的人口密度、天气情况、人均收入、社会观点等等基于地理位置的不同数据。
下面这张图,就展示了2008年美国大选的投票结果。红色是麦凯恩,蓝色代表奥巴马,用不同的颜色深度表示他们在不同的州赢得的支持率。结果,当然大家都是知道滴。
热力图溯源
前面说过,热力图是根植于传统地图的一种新型的图表,所以热力图的历史并不长。
很多因素限制了热力图的萌芽,其中就包括现代地图学。
直到19世纪,航海大发现催生了现代地图学的成熟和发展,采用投影法的地图越加精细,全球的地理数据积累也日益丰富,热力图才自然而然地被发明出来了。
法国的一位数学家、工程师、经济学家和政治家夏尔.潘迪(Charles Dupin 1784-1873),可能是世界上第一位使用热力图的人。
这张发表于1826年的黑白地图上,以从白到黑不同深度,标示了法国文盲的分布情况。
热力图的使用
热力图是完美的传统地图与现代数据结合的产物,最大的特点,就是它的数据范围有边界,而这个边界,是由传统地图或者说人为划定的。
就像前面美国大选图,我们可以看到以各个州、市中双方赢得的选票比例。
相信诸位现在心里会有一个疑问了。
我知道,且看下面这张图,请注意其中的一些细节。
这是关于英伦三岛的一张人口密度分布图。
请注意,它不是直接按照人口密度分布画出的等值线图,而是以行政区域来划分数据边界的。
请注意图中的一些细节:
这张图上主要显示的是英国各个郡的人口密度分布情况。但是有的郡区域内,会有很小部分颜色很深,说明人口密度比周边地区要高出很多。
因为像都柏林、爱尔兰这些地区,整体人烟稀少,人口密度很低,但是在中心城市却聚集大量人口,采用全郡平均值的话,会引起很大的误会。
所以,这张图上,将一些重点城市的人口密度也标示出来。以免造成误读。
当然,我们别忘了,热力图还有一个名字叫做等值线图。这里人为划分的行政区域已经取消,数据的边界由数据本身决定。
就像下面这张全球轮班航次图。
热力图最佳设计指南
前面我们已经简单介绍了热力图的一些基本情况,下面该讲讲基本的设计原则了。
粗的轮廓线,会使得地图上的各个图块变得分散。
热力图中,同一系列的颜色应该选用同一色系的颜色,或者是相近颜色的过渡色。
可以用不同的图案标示不同的变量。但是不宜超过3种,否则就喧宾夺主了。
选择3-5个数据范围,尽量使数据在这几个范围内分布均匀,超出这个范围的数据用+/-号表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29