
数据可视化的10个关键术语_数据分析师
Format 交互方式
Interactive visualisations allow you to modify, manipulate and explore a computer-based display of data. The vast majority of interactive visualisations are found on websites but increasingly might also exist within apps on tablets and smartphones. By contrast, a static visualisation displays a single, non-interactive display of data, often with the aim for it to be viewed in print as well as on a screen.
交互式可视化允许您修改,操作和探索计算机显示的数据。绝大多数交互式可视化系统在计算机网络上,但越来越多出现在平板电脑和智能手机上。相比之下,静态可视化只显示单一的、非交互数据,它通常是为了打印和在屏幕上显示。
Chart type 图表类型
Charts are individual visual representations of data. There are many ways of representing your data, using different marks, shapes and layouts: these are all called types of charts. Some chart types you might be familiar with, such as the bar chart, pie chart or line chart, whilst others may be new to you, like the sankey diagram, tree map, choropleth map. See the section called ‘Taking time with visualisation’ for more on chart types.
图表是数据视觉化表示的特殊方式。表示数据的方法有很多,如使用不同的符号、形状和排列,我们把这些称之为图表的类型。一些图表类型你比较熟悉,如条形图、饼图、折线图,但其他类型你可能就很少见了,如桑基图、树图、等值线图的地图。
Dataset 数据集合
A dataset is a collection of data upon which a visualisation is based. It is useful to think of a dataset as taking the form of a table with rows and columns, usually existing in a spreadsheet or database. The rows are the records – instances of things – and the columns are the variables – details about the things. Datasets are visualised in order to ‘see’ the size, patterns and relationships that are otherwise hard to observe.
数据集合是需要可视化处理的数据集合。你可以简单认为数据集合就是很多行和列的数据,这些数据通常在电子表格或数据库中。行代表一个记录,也就是一个事务的实例;列是变量,代表事务的具体信息。数据集合的大小、形式和关系是可以看到的,否则我们就很难观察。
Data source 数据源
When visualisers want to show you where the data or information comes from, they will include it in the visualisation. Sometimes it appears near the title or the bottom of the page. Other times, if the visualisation comes with an article, you can find it in the accompanying text.
当数据可视图的作者想告诉你展示的数据或信息的来源时,这些来源信息也会显示出来。通常会显示在标题附近或页面的底部。如果数据可视图有文章资料,你可以在文章中找到来源信息。
Axis 轴
Many types of chart have axes. These are the lines that go up and down (the vertical Y axis), or left and right (the horizontal X axis), providing a reference for reading the height or position of data values. Axes are the place where you will usually see the scale (see below) providing a stable reference point against which you form your reading of the chart.
许多类型的图表有轴。轴分为垂直的Y轴(向上或向下)和水平X轴(向左或向右),目的是为阅读数值的高度或位置提供一个参考。轴的位置通常会有刻度(见下文),刻度为阅读图标提供一个固定的参考点。
Scale 度量
Scales are marks on a visualisation that tell you the range of values of data that is presented. Scales are often presented as intervals (10, 20, 30 etc.) and will represent units of measurement, such as prices, distances, years, or percentages.
度量表示数值的规模和范围。度量通常以间隔表示(10、20、30等等),代表度数字的单位,如价格、距离、年,或百分比。
Legend 图例
Many charts will use different visual properties such as colours, shapes or sizes to represent different values of data. A legend or key tells you what these associations mean and therefore helps you to read the meaning from the chart.
许多图表使用不同的视觉样式来表示不同的数据,如颜色、形状或大小。一个图例或样例告诉你这些样式是什么意思,从而帮助你阅读图表。
Variables 变量
Variables are the different items of data held about a ‘thing’, for example it might be the name, date of birth, gender and salary of an employee. There are different types of variables, including quantitative (e.g. salary), categorical (e.g. gender), others are qualitative or text-based (e.g. name). A chart plots the relationship between different variables. For example, the bar chart to the right might show the number of staff (height of bar), by department (different clusters) broken down by gender (different colours).
我们可以用变量描述不同的人或事,例如,它可能是名字,出生日期,性别和工资。变量有不同类型,包括数量(如工资)、类别(如性别),还包括属性或文本信息(如名字)。图表可以表示不同变量之间的关系。例如,右边的条形图可以显示不同部门(不同的组)的员工的数量(柱的高度)和性别组成(不同的颜色)。
Outliers 离群值
Outliers are those points of data that are outside the normal range of data in some way. Visualisations can often help to identify patterns in the data – in the example on the right, the higher the number on the x axis, the greater the number on the y axis. Sometimes individual bits of data don’t fit in to the pattern, like the orange dot here; those are the outliers.
离群值是那些数值超出了正常数值范围的数据。我们知道图表常常可以帮助识别数据模式,在右边的例子中,x轴上的数量越大,在y轴上数量就越大,这就是一种数据模式。有时候有些特殊的数据不符合图表中数据模式,如图中橙色点,它们就是离群值。
Input area 输入区
Input areas allow you to enter information into a visualisation, maybe to search for certain names or places, or to input information about yourself that will be used in the visualisation.
输入区允许你在图表中输入信息,或是寻找特定名字或位置,或为了输入你自己的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10