
美政府大数据对学生贷款应用_数据分析师
导读:美国的信息系统可谓非常发达,但是你能想象吗,管理者4000万学生贷款信息的教育部系统十分陈旧,系统无法有效的归纳出美国学生贷款的具体债务情况,无法预测在降低还款数额后,还有多少人需要还款。为了解决此问题,教育部要研发一套信息系统,而且要几年的时间才能建成。
由于数据收集系统过时陈旧,奥巴马政府顶着1.1万亿美元的学生贷款,却无法获得债务的基本资料。而这严重阻碍了政府去帮助那些倍受压力的债务人,也无法及时有效地保护纳税人。
问题的焦点在于教育部门的电脑系统。虽然这个系统保存了大约四千万个学生贷款资料,却无法及时有效地归纳出每个学生贷款的具体债务情况。比如说,在降低还款数额后,债务人是否仍旧拖欠学生贷款。与此同时,在处理新增贷款时,这个系统也缺乏分析数据的能力。官员们表示,他们不希望因为这个系统从而妨碍联邦政府对现有学生的经济援助.
上个月,当白宫发现豁免联邦学生贷款的成本预计高达220亿美元时,这些潜在问题终于浮出水面。于是,这次财政修订成了年度程序的一部分,财务人员重新估算了联邦贷款项目的成本和收益。
为了防止类似情况再次发生,以及更准确地计算学生贷款的长期成本,政府希望从教育部获得更加及时详尽的数据。在奥巴马总统的2016年预算中,已经拨出1千6百万美元用于建造一个更加现代化的数据系统。
教育部发言人DeniseHorn表示,整个系统正处于研发期,等到项目完成,这个系统将会“更加及时,准确,一致地分析联邦助学金的数据。”她同时表示,这个系统将会在未来几年分期完成。
财务部副部长SarahBloomRaskin对于缺乏有效信息表示担忧。她在去年某次公开讲话中指出:“考虑到学生贷款债务人的数量,未偿还学生贷款的总额,以及债务人如何在还款期内偿还债务,财务部将致力于开展有效的调研以获取对这个群体的有用数据。
目前,由于缺乏相关数据,政府在一些政策上无法决断。比如说,政府针对没有偿还能力的借贷人设计了一个“基于债务人收入”的偿还计划,这个项目允许降低贷款人每个月的还款金额,以及在某些特殊情况下的债务豁免。然而,政府却不知道具体有多少人加入了这个项目。更糟的是,对于那些已经参与项目,却依旧拖欠偿还的债务人,政府仍然无法给出一个确切的数字。为了得到参与项目的人数,以及跟踪他们的还款情况,政府开展规划,而这一举措某种程度上推动了上个月公布的220亿美元修订案。
官员们纷纷表示他们需要数据来回答一个关键问题: 为什么美国人一直拖欠他们的学生贷款?甚至在当下劳动力市场和美国经济都开始复苏的时候?换言之,在他们经济负担相对较小的时候?
“要得到满足我们需要的学生贷款数据,还有很长的一段路要走.”我们不但需要评估方案的有效性,还需要帮助陷入还款困境的贷款人,RohitChopra,联邦消费者金融保护局助学贷款监察员如是说。“鉴于学生贷款数量爆发式的增长和学生贷款违约的增加,提升我们对这个群体的了解是至关重要的。只有这样,我们才不会重蹈覆辙,再犯一些导致当年次贷危机的错误.”
这些问题反映了政府自2010年来作为全国学生贷款的主要借款人这一新角色所遭遇的困难。在2010之前,学生贷款主要借贷对象是私营机构,比如美国最大学生贷款供应商SallieMae(SLMCorp.’sSallieMae),并且由政府提供担保。
一些教育专家认为,政府还没有做好充分的准备来管理和评估这项已经由私营机构管理了几十年的领域。
“如果你没有足够的信息去执行这个项目并且实现盈利,这里面的赤字风险是巨大的,”威斯康星–麦迪逊大学联邦教育政策教授SaraGoldrick-Rad说。“坦白讲,这是个相当复杂的任务,那么多精明的银行已经做了这么久,而政府里的这帮人对此却不是那么在行。
即使有新的数据系统使财政部更好地了解政府的贷款组合信息,而非政府的研究人员依旧可能在相关问题上留下疑问.
教育部最近发表了季度报告,阐述了政府为每个大学支出的学生贷款和赠款。教育部还发布了各个学校贷款违约率的年度报告。但是有关那些领取和偿还贷款的学生,研究人员还想要有更为细化的数据,他们认为这能更好的为政策决议提供支持。
但是出于隐私保护,教育部一直不愿意将这些报告的具体内容公诸于众。
因为教育部没有“创建一个真正强大的机制,既能保护个人身份信息的安全,同时又让合法的研究人员对该信息进行研究。”美国研究所管理研究员,前教育部高级官员ThomasWeko说。
研究人员将无法直接通过新研发的学生贷款数据系统进行分析,与此同时,对于教育部是否公开匿名数据,仍然有待商榷。
教育部官员Horn女士说:“我们将会继续寻找契机为相关外部机构提供更多可用于大规模的研究的数据,同时我们也能依据联邦法规和章程保护我们客户的隐私。”
神州融大数据风控平台是由神州融与全球最大征信局Experian(益博睿)、阿里金融云联合各大征信机构、电商平台等伙伴合作打造,小微金融机构零门槛即可拥有价值千万、世界顶级信贷工厂管理系统与量化风控决策能力,一站式轻松接入3000 维度鲜活数据源和自动化决策评分卡,并免费对接大型电商平台、获得垂直信贷场景下的创新金融产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20