
大数据能否拯救保险业数据“干涸” _数据分析师
商业车险新费率改革下月起将在6试点省市全面实行,然而最新数据显示,目前经营车险业务的中外资企业绝大部分仍处于全线亏损的状态。对此,业内人士认为,数据分析等基础工作没有到位仍是造成险种亏损、制约费改的重要因素,如何整合数据资源、实现信息共享、利用大数据进行产品和渠道的创新是保险业把握跨越式发展机遇的关键一步。
信息壁垒阻滞创新
据了解,目前保险行业基础数据积累比较薄弱,已经影响到保险业产品设计、定价、营销、理赔以及行业监管等各环节的创新发展。而目前保险业无力整合业内外信息数据资源实现信息数据共享,信息数据管理和分析处理能力不足等问题又加剧了保险业数据的干涸程度。
中国保险行业协会会长朱进元表示,新“国十条”提出要大力发展责任险,但是产品的设计离不开对信息数据的掌握和分析:“比如医疗责任险,每年有多少案例,其中千分之几出现这样的问题,大约需要赔付多少,这就是保险产品的基础数据,但这些都掌握在医院手里,保险公司没有这个数据。”
一位保险业内人士则表示,一些地方的卫生和人社部门不让商业保险公司用信息平台:“在一些地方,商业保险公司承接政策性医保项目不赚钱甚至亏损,但之所以这么做,就是为了掌握居民医疗信息。”
不仅如此,保险行业内也存在信息数据不共享的问题。“保监会有几十亿条数据躺着睡觉没有利用起来。”北京大学风险管理与保险学系主任郑伟表示,虽然目前保险业做了年度信息披露报告,解决了外部获取保险业信息的问题,但是总体来看还是披露的太少。
利益分割造成数据割据
对于信息数据割据的原因,有保险人士认为,这实际是利益分割的结果。行业外的部门把保险业当队友还是对手,决定了他们是否会向保险行业开放数据共享。
“很多医疗部门、社保部门把我们当竞争对手,其实他们解决层次低的问题,我们提供中高端保障,实际上是互补的,都会对社会稳定发挥作用,但是基础数据他们一直在做,我们相用,壁垒很高。”上述人士表示,以医责险为例,如果对它的效果有共识,则会促进相关数据的公开。
值得注意的是,信息安全也是决定一些数据是否适合公开的重要考量。保监会副主席王祖继表示,现在来自各方面的海量数据让数据处理的软硬环境更加复杂敏感,更容易成为攻击目标。防范信息安全风险已经成为大数据时代的重要课题。
数据共享需制度保障
业内人士建议,应推动各部门向保险行业开放相关数据信息平台,实现互利共享。同时尽快通过完善法律法规来营造有法律约束的,安全的数据开放和共享环境。同时,保险行业也应提升积累、分析和利用数据信息的能力。
朱进元认为,保险业想要在大数据时代有所作为,数据积累是一项基础工程。“应重塑保险业在国民经济发展中的地位,鼓励各部门用开放的心态对待保险业。”他表示,以农业保险为例,好的数据积累,对于提升农业保险的数据准确度、增强费率定价能力、提高农业保险保障水平至关重要。
“下一步要推动形成一个巨大的信息网络,在这个系统之内大家可以自由地流通信息。”保监会主席项俊波说,只有得到各部门的支持,通过建立平台实现信息共享,才能有效降低承保过程中出现的跨险种、跨机构、跨领域风险,实现监管环节的现代化。另一方面,要尽快建立和完善相关法律,让信息数据公开有法可依。保监会财产保险监管部主任刘峰建议,我国可借鉴美国的《信息公开法》,要求政府部门形成的数据,除非保密需要,都应充分向社会公开。王祖继认为,行业监管部门要监督保险机构严格遵守信息化主管部门制定的规章制度,进一步完善行业信息化治理,强化责任落实,加强信息安全培训,提升信息安全技术,完善信息安全预警和响应机制,进一步健全与大数据时代相适应的信息安全保障体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19