
应用案例:联合国与Frog用大数据拯救尼泊尔
当年菲律宾被台风海燕横扫,短短几小时内造成愈10,000名的人员伤亡。美国红十字会地理空间高级工程师Dale Kunce曾要求获得数据为应急人员绘制出抢救地图路线,菲律宾政府匆匆忙忙扫描了40多页模糊不清的Excel表格给他,“甚至都不是由机器扫描的,纸张排列杂乱,数据有效性也几乎没有。”结果不得以找来几十个志愿者当场重新输入信息。
这种后院着火的事情一度屡见不鲜,直到去年联合国人道主义协调事务办公室与全球Frog设计公司共同搭建了HDX网站——旨在呼吁人道主义数据交换。这个网站界面清爽,数据分类整洁,可以帮助松散的人道主义组织联合在一起工作。这个网站在非洲埃博拉病毒疫情爆发事件中提供了诊所基本信息,死亡报告及疫情跟踪功能,目前则主要提供尼泊尔数据。
“就好像糖果粉碎传奇里的灾难信息共享一样,”Kunce说道,暗指前端信息的重要性,然后由大型的人道主义救援组织进行整合,从而为泊尔提供更快的救援行动。
HDX平台
HDX看起来貌不惊人。尼泊尔地震登陆页面是一个表格,显示当地的地震活动。拉下来就是已确认粗略的伤亡人数,然后就是一系列简单的文档, 比如人口,天气数据,河流分布和路况等。
不过,点击下鼠标,这些数据就可以被标准化下载——都是可编辑的文本形式取代僵硬的PDF。再点击下鼠标,被批准的组织可以上传数据以供分享。这种前所未有的能提供快速有效信息分享的平台就是HDX的目的,设计时也听取众多NGO的反馈意见。
如何使用
在HDX问世前,人道主义常常需要花费大量时间进行文件处理。支持小组的负责人Justine Mackinnon解释道:“我们为六个国际型组织提供信息,每个组织的文件格式都不一样,这简直是个噩梦。不过现在有了HDX, 所有文件都同格式输入,也方便大家分享。”
支持小组是由来自80个国家的2,000名应急人员组成,他们分析了数百万的尼泊尔数据后搭建了几个大型数据库,数据范围从紧急需求呼叫到汇报哪些应急人员已经到达尼泊尔,还有地震类型汇报。到这篇文章问世,HDX上关于尼泊尔的数据库将达到10个。
“这在尼泊尔真的是非常及时,”HDX的项目经理Sarah Telford说“这些数据改变了危机,目前最重要的就是地理空间数据,它可以指导哪里是道路,哪里是城镇,医院在哪里。如此我们才可以知道哪里被堵上了,哪里可以让直升飞机降落。”
救援组织Mapaction地震不久后就在HDX上下载了五份重要的文件,内容关于当地的河流和山脉。这些信息可用在PPT上要求协调政府,非政府组织及联合国的行动,同时也打印出来让志愿者在没有电力供应的情况下使用。
在红十字会,Kunce马上下载了尼泊尔的贫困人口数据进行分析,贫困人口地区往往更容易遭受自然灾害,而这些数据让红十字会更好的进行资源配置。
共通语言
那么什么是HDX的“共通语言”?仅仅是些非PDF的文件么?
答案当然不是这些。HDX有清晰简洁的前端,一种纯粹的功利主义及普遍的审美的结合——这被Telford称为该领域的“时代精神”。因为HDX, 各大国际性组织的交流和分享更为紧密。
“像我们这种很书生气的人真的很喜欢这种闪闪发光的东西,” Kunce说。“HDX就是闪闪发光的,我们都很喜欢。”最重要的是,HDX搭建数据平台的意义好像罗赛塔石碑一样——这是联合国为识别地方设施设计的代码,简称为P。不过P不像GPS那样精准定位,相反各种组织可能为同一个地方有不同的P代码,逻辑也各不相同,而且每次都不一样。也就是说,2015年的代码到了2017年就可能完全不适用。
为什么一直没有一个统一的代码标准呢?实际是有的,1999年以来,联合国已经制定发布了代码标识标准,并提供在线下载。但是Kunce说没有人用这些,他不得不四处挖掘数据供红十字会使用。但这些年随着HDX的普及,代码制定规则也随着普及标准化。为什么?他相信是HDX让大家知道了信息共享的重要性以及和联合国代码合作的迫切。
“其实这并不是技术问题,而是政治问题,”Kunce说。“从我的角度来看,我旁观看着HDX不断成长,为数据分析提供了平台,促进标准统一,也帮助不同政治背景的人解决问题,这是多好的技术平台啊。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29